
MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES

PETER LEFANU LUMSDAINE

Abstract. We show that for any dependent type theory with Martin-Löf

identity types and mapping cylinders (defined as certain higher-dimensional

inductive types), the category of contexts carries a pre-model-structure, i.e.
a model structure minus the completeness conditions. The (trivial cofibra-

tions,fibrations) are the Gambino-Garner weak factorisation system of [GG08],

while the weak equivalences are equivalences in the sense of Voevodsky [Voe].
It follows that any categorical model of this type theory carries a pre-model-

structure, and so, if it is additionally complete and co-complete, is a model

category.

Contents

1. Type-theoretic background 1
2. Type-theoretic mapping cylinders 3
3. A pre-model-structure from mapping cylinders 4
4. Characterisations of fibrations and cofibrations 8
5. Model structures from mapping cylinders 9
References 10

This note isn’t intended for formal publication in its current form: I’d like to
wait until some more background is available (eg [LS11a], [LS11b]) to give better
context and motivation. However, at least from a purely formal point of view, this
proof stands on its own; and I’ve talked a bit about the result publicly, so it seems
right to make the proof available in some form.

Thanks as ever to Michael Warren, Mike Shulman, Chris Kapulkin, Steve Awodey,
and Nicola Gambino for helpful feedback and suggestions!

1. Type-theoretic background

We will need a few basic definitions and deductions in the type theory. We work,
for this section, in the setting of Martin-Löf Type Theory with at least identity
types; we do not assume Π-, Σ-, or any base types.

To emphasise the intended homotopy-theoretic interpretation, we will write the
identity types as PathsA(x, x′); and the syntax we use for their eliminator will be:

Γ, x, x′ :A, u :PathsA(x, x′), ~w :∆(x, x′, u) ` C(x, x′, u, ~w) type
Γ, x :A, ~w :∆(x, x, refl(x)) ` d(x, ~w) : C(x, x, refl(x), ~w)

Γ, x, x′ :A, u :PathsA(x, x′), ~w :∆(x, x′, u) `
path-elimx,x′,u,~w.C(x,x′,u,~w)(x, ~w.d(x, ~w); x, x′, u, ~w) : C(x, x′, u, ~w)

Id-elim

Date: 7 December, 2011.
1

2 P. LEF. LUMSDAINE

Where unambiguous, we will omit the subscripts on path-elim.
From these identity types, we can derive identity contexts over arbitrary contexts

([Str93], [GG08]), with formation rule:

Γ ` ∆ cxt

Γ, ~x, ~x′ :∆ ` Paths∆(~x, ~x′) cxt

and satisfying intro, elim, and comp rules analogous to those for identity types. We
will write the “eliminator” for these also as path-elim.

We will need two derived rules involving paths: transport between fibers of a
fibration along a path in the base; and the action of any map on paths, taking paths
in its domain to paths in its codomain.

Lemma 1. One may derive terms transport, dep-cong1, witnessing the following
rules:

Γ, x :A ` B(x) type

Γ, x, x′ :A, u :Paths(x, x′), y :B(x) ` transportx.B(x)(u, y) : B(x′)

Γ, x :A ` f(x) : B(x)

Γ, x, x′ :A, u :Paths(x, x′) ` dep-cong(x.f(x); u) : Paths(transport(u, f(x)) , f(x′))

and with computation rules

transport y (refl(x)) = y, dep-cong (refl(x)) = refl(f(x)).

As with path-elim, in practice we will elide the subscripts on these as often as
possible, and use these terms also to mean their analogues for identity contexts.

Proof. The terms involved are each defined by a single instance of path-elim:

transportx.B(x)(u, y) := path-elimx,x′,u,y. B(y)(x, y. y; x, x′, u, y)

dep-cong(x. f(x); u) :=

path-elimx,x′,u.Paths(transport(u,f(x)),f(x′))(x. refl(f(x)); x, x′, u) �

Given a universe or some other form of polymorphism, transport and dep-cong
can be defined as polymorphic terms of the theory.

We will also make use of some derived judgements: contractibility of a dependent
type, and equivalences between contexts.

Definition 2. When Γ ` A type, write

Γ ` (a, α) contract A

to abbreviate the pair of judgements

x :Γ ` a(x) : A ~x :Γ, y, y′ :A ` α(~x, y, y′) : Paths(y, y′).

Similarly, we will write

Γ ` isContr A

if there exist terms (a, α) such that Γ ` (a, α) contract A.
In a theory with more constructors, one can represent these internally by the

type isContr(A) := A×Πx,x′:APaths(x, x′).

1The name dep-cong stands for ‘dependent congruence’; in type theory, the action of functions
on paths is traditionally considered as the fact that equality is a congruence for all functions.

MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES 3

Definition 3. Next, if Γ ` ∆,Θ cxt, we will write

Γ ` (~f,~g,~g′, ~η,~ε) ∆ equiv Θ

to abbreviate the five judgements

Γ, ~x :∆ ` ~f(~x) : Θ

Γ, ~y :Θ ` ~g(~y) : ∆ Γ, ~x :∆ ` ~η(~x) : Paths∆(~g(~f(~x), ~x))

Γ, ~y :Θ ` ~g′(~y) : ∆ Γ, ~y :Θ ` ~ε(~x) : PathsΘ(~f(~g′(~y)), ~y).

In other words, ~g is a left up-to-homotopy inverse of ~f , and ~g′ a right. We will
write

Γ ` isEquiv ~f

when there exist (~g,~g′, ~η,~ε) as above. Again, with enough constructors in the theory,
isEquiv f may be represented internally as a type.

(This definition is equivalent to Voevodsky’s definition of equivalences in terms
of contractible homotopy fibres; compare Lemma 17 below.)

2. Type-theoretic mapping cylinders

Mapping cylinders are familiar from topology; here we axiomatise them type-
theoretically, as a special case of higher inductive types. See [Lum11], [LS11a] for a
more general introduction to these types.

Definition 4. A type theory T with identity types has mapping cylinders (for
types) if it has constructors Cyl, in-base, in-top, in-cyl, satisfying the eight following
rules. The pattern of these is familiar from ordinary inductive types: there is one
formation rule; there are three introduction rules, for the three constructors; there
is one elimination rule, with three “inductive premises”; and there are three com-
putation rules. As usual, we suppress throughout an ambient context Γ, assumed
to appear in all judgements involved.

The formation rule is straightforward:

x :X ` f(x) :Y

y :Y ` Cylx.f(x)(y) type
Cyl-form

By abuse of notation, we will often write just Cylf for Cylx.f(x). In all the following
rules, we will assume the hypothesis of Cyl-form among the premises.

The introduction rules are also straightforward:

y :Y ` in-base(y) :Cylf (y) x :X ` in-top(x) :Cylf (f(x))

x :X ` in-cyl(x) :PathsCylf (f(x))(in-top(x), in-base(f(x)))

The third “inductive premise” of the eliminator is slightly subtle in form, since
in-cyl is a path-constructor:

y :Y, z :Cylf (y) ` C(y, z) type
y :Y ` dbase(y) :C(y, in-base(y))
x :X ` dtop(x) :C(f(x), in-top(x))

x :X ` dcyl(x) : PathsC(f(x),in-base(f(x)))((transport in-cyl(x) dtop(x)) , dbase(f(x)))

y :Y, z :Cylf (y) ` cyl-elimC(dbase, dtop, dcyl; y, z) :C(y, z)

4 P. LEF. LUMSDAINE

The three computation rules assert, under the same premises as the elimination
rule, that:

y :Y ` cyl-elimC(dbase, dtop, dcyl; y, in-base(y)) = dbase(y) : C(y, in-base(y))

x :X ` cyl-elimC(dbase, dtop, dcyl; f(x), in-top(x)) = dtop(x) : C(f(x), in-top(y))

x :X ` cyl-comp(x)

: Paths(dep-cong(z. cyl-elimC(dbase, dtop, dcyl; f(x), z) , in-cyl(x)) , dcyl(x))

It may seem odd that this last “computation” rule in fact only posits a path,
not a definitional equality. This is currently a point of uncertainty for higher
inductive types in general. However, since the action of morphisms on paths (as
given by dep-cong) is not generally well-behaved up to definitional equality, it seems
perhaps incongruously strict to request one here. More pragmatically, the analogue
of Proposition 7 seems difficult with the third computation rule definitional.

In the first two computation rules, however, or at least in the one for in-top, we
really do require definitional equality, since we use cyl-elim to construct on-the-nose
factorisations of maps in Lemma 15.

In the hypotheses needed for the main theorem, we will be able to weaken these
rules in one respect:

Definition 5. T has non-dependent mapping cylinders if the above rules hold over
the empty context. (That is, we remove the implicit convention that all rules should
be read as including an ambient context of parameters.)

While this is in many ways a less natural definition, it suffices for the main
theorem of the present notes; and it has the advantage of being (possibly) simpler
to model, avoiding some of the potential coherence problems of the full dependent
version.

In another direction, we will need to strengthen these rules:

Definition 6. T has mapping cylinders for contexts if for any dependent context
morphism

Γ ` ∆, Ξ cxt Γ, ~x :∆ ` ~f(~x) : Ξ

we are given a context
Γ, ~y :Ξ ` Cyl~x.~f(~x)(~y) cxt

with constructors and eliminators analogous to those of Definition 4.

However, this is not too much of a strengthening:

Proposition 7. If T has Id-types, Σ-types, and all (resp. non-dependent) mapping
cylinders for types, then it has such mapping cylinders also for contexts.

Proof. Given any context map ~f , we can use Σ-types to represent it as a map of

types f ; then the mapping cylinder of f provides one for ~f . �

3. A pre-model-structure from mapping cylinders

Definition 8. A weak factorisation system on a category C is a pair (L,R) of
classes of maps of C, such that L = �R, R = L�, and every map in C admits
some factorisation as a map in L followed by a map in R.

Note that in any wfs, both classes of maps are automatically closed under re-
tracts.

MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES 5

Definition 9. A pre-model-structure on a category C consists of three classes
(C,F ,W) of maps of C, such thatW satisfies 3-for-2, and (C,F∩W) and (C∩W,F)
are weak factorisation systems on C.

Compare [Hov99, 1.1.3–4]. A pre-model-structure is just a model structure,
minus the completeness conditions on C and functoriality of the factorisations.

Theorem 10. Suppose T is a type theory with Id- and Σ-types and non-dependent
mapping cylinders; or, more generally, with Id-types, and non-dependent mapping
cylinders for contexts.

Then C̀ (T) carries a pre-model-structure, with classes of maps as defined in
Definitions 11–13 below.

By Proposition 7, it is sufficient to consider the case with mapping cylinders for
contexts; so from here on, fix such T, and work within it.

Definition 11 (Gambino-Garner [GG08]). Take the generating fibrations F0 to be
the dependent projections πΓ,A, for all types Γ ` A type. Set T C := �(F0) (the

trivial cofibrations), and then F := T C� (fibrations).

Definition 12. Take the generating trivial fibrations T F0 to be the dependent
projections πΓ,A for types such that Γ ` isContr A. Then as above, define C :=
�(T F0) (cofibrations), T F := C� (trivial fibrations).

Definition 13. Take W, the class of weak equivalences, to be the class of context
morphisms f such that ` isEquiv f .

This definition of the cofibrations and trivial cofibrations is rather indirect: can
we describe them, or at least some large class of them, more explicitly? We will
address this in Section 4 below; but the main intuition to have is that constructors
of inductive types will be cofibrations, and that these will be trivial when they are
the only constructor of the type.

The following two lemmas show special cases of that:

Lemma 14 (Gambino-Garner [GG08, 4.2.2]). Every map factors as a map which
is in both T C and W, followed by a map in F0. Call the class of maps appearing
in these factorisations T C0.

Proof. Given a map f : Θ→ ∆, factor it through its “homotopy fiber” context:

~y :∆, ~x :Θ, ~u :Paths∆(f(~x), y). �

Lemma 15. Every map factors as a C, followed by a T F0.

Proof. Given f : Θ→ ∆, factor it through its mapping cylinder:

Θ
f,in-top−−−−→ ∆,Cylf

πCylf−−−→ ∆

We need to show that (f, in-top) is a cofibration, and that ~y :∆ ` isContr Cylf (~y).
The first of these is a typical case of showing an inductive constructor to be in C.

We need to show that we can lift (f, in-top) against any generating trivial fibration:

Θ
h //

f,in-top

��

Θ, A

πΘ,A

��
∆,Cylf

k //

t

::

Θ

6 P. LEF. LUMSDAINE

This amounts to finding a term

~y :∆, z :Cylf ` t(~y, z) : A(k(~y)).

such that t(~x, in-top(~x)) = h(~x). But we may obtain this just by an application of
cyl-elim, using h for the premise corresponding to in-top, and supplying the other
premises using the contraction on A. Specifically, if a, α is a contraction for A, then

t(~y, z) := cyl-elimy,z.A(k(~y,z))(~x.h(~x), ~y.a(k(~y, in-base(~y))), ~x.α(,))

gives a filler as desired.
Secondly, to show that ~y : ∆ ` isContr Cylf (~y), take in-top(~y) as the canonical

inhabitant. Then to construct the desired contraction ~y : ∆, z, z′ : Cylf (~y) `
α(~y, z, z′) : Paths(z, z′), it is enough (by composition of paths) to construct a term

~y :∆, z :Cylf (~y) ` β(~y, z) : Paths(z, in-top(~y)).

This again we obtain by cyl-elim. Two of the inductive premises are easy: in
the case z = in-base(~x), we use in-cyl(~x), and in the case z = in-top(~y), we use
refl(in-top(~y)). It remains to provide the third inductive premise, for in-cyl:

~x :Θ ` dcyl(~x)

: Paths(transportz.Paths(z,in-top(f(~x)))(in-cyl(~x), in-cyl(~x)), refl(in-top(f(~x)))).

But this is an instance of a general fact about how paths transport along them-
selves, provable for any type X

x0, x1 : X, u : Paths(x0, x1) `
transport-lemma(u) : Paths(transportx.Paths(x0,x1)(u, u), refl(x1))

by path-elim: when u is refl(x), the goal reduces to Paths(refl(x), refl(x)), so in this
case we may use refl(refl(x)). �

Lemma 16. W satisfies 3-for-2, and is closed under retracts.

Proof. This follows purely formally, from the fact that homotopy of context mor-
phisms is an equivalence relation, preserved by composition on either side. For
instance, suppose

Γ0

u

��

s0 **
∆0

r0

jj

w

��
Γ1

s1 **
∆1

r1

jj

is a retraction, with w ∈ W.
Now if i : ∆1 → Γ1 is a left homotopy inverse for w, then r1 · i · s0 is a left

homotopy inverse for u, since r1 · i · s0 · u = r1 · i · w · s0 ' r1 · s0 = 1.
Similarly, if j : ∆1 → Γ1 is a right homotopy inverse for w, then r1 · j · s0 is a

right homotopy inverse for u: u · r1 · i · s0 = r0 · w · i · s0 ' r0 · s0 = 1.
The three parts of 3-for-2 all follow similarly. �

We need one last logical lemma:

Lemma 17. For any type Γ ` A type, the projection πΓ,A is an equivalence if
and only if Γ ` isContr A. In other words, F0 ∩W = T F0.

MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES 7

Proof. (⇐) Suppose Γ ` (a, α) contract A. Then ~x 7→ (~x, a(~x)) gives an on-the-
nose right inverse for πΓ,A, and ~x, y 7→ ~x, α(y, a(~x)) witnesses that it is moreover a
left homotopy inverse.

(⇒) Suppose πΓ,A is a weak equivalence, with right homotopy inverse ~g. Then
~g is of the form ~gΓ, a

′, where

~x :Γ ` ~ε(~x) : PathsΓ(~gΓ(~x), ~x),

~x :Γ ` a′(x) : A(~gΓ(~x)).

Then a(~x) := transport(~ε(~x), a′(~x)) gives us the desired inhabitant of A(~x), for any
x :Γ.

To show Γ ` isContrA, it remains to find some α such that

~x :Γ, y, y′ :A ` α(~x, y, y′) : Paths(y, y′).

For this, it is sufficient to find β such that

~x :Γ, y :A ` β(~x, y) : Paths(a(~x), y).

Since πΓ,A is a weak equivalence, any right homotopy inverse is also a left ho-
motopy inverse. In particular, (πA,a) is: we can derive ~η so that

~x :Γ, y :A ` ~η(~x, y) : PathsΓ,A((~x, a(~x)) , (~x, y)).

This looks tantalisingly like the β we seek, but is not quite right: unwinding the
definition of path contexts, ~η consists of (~ηΓ, ηA), where

~x :Γ, y :A ` ~ηΓ(~x, y) : PathsΓ(~x, ~x),

~x :Γ, y :A ` ηA(~x, y) : PathsA(~x)(transport(~ηΓ(~x, y), a(~x)) , y),

so the source of ηA(~x, y) isn’t exactly a(~x), as we’d like it to be. However, we can
correct the difference, using dep-cong:

~x :Γ, y :A ` dep-cong(~x.a(~x); ~ηΓ(~x, y)) : PathsA(~x)(transport(~ηΓ(~x, y), a(~x)) , a(~x)),

so composing the inverse of this with ηA(~x, y), we have the desired term β. �

Let’s recap what we now know:

• (T C,F) and (C, T F) are closed orthogonal pairs of classes, each admitting
factorisations, with the factors lying in subclasses T C0, F0 etc.;
• W contains all identities, satisfies 3-for-2, and is closed under retracts;
• T F0 = F0 ∩W;
• T C0 ⊆ W.

To show that we have a pre-model-structure, it remains to show that T F = F∩W
and T C = C ∩ W. But this follows from the facts listed above, by a succession of
purely formal factorisation/retract arguments.

Lemma 18. T F = F ∩W, and T C = C ∩W.

Proof. As every first-year logic student knows, this reduces to showing six inclu-
sions, which we tackle individually.

By definition, T F0 ⊆ F0; so by monotonicity, T C ⊆ C, and thence T F ⊆ F .

T C ⊆ W: given f ∈ T C, factor it as f = p · i, where i ∈ T C0 (and hence i ∈ W),
and p ∈ F0.

8 P. LEF. LUMSDAINE

Then f lifts against p: there is some s with i = s ·f , p · s = 1. But this expresses
f as a retract of i ∈ W, so f is itself in W.

• i //

f ��

•
p

��
•

• i //

f

��

•
p

��
•

s

??

•

•
f

��

•
i

��

•
f

��
•

s
// •

p
// •

W ∩ C ⊆ T C: given any f ∈ W ∩ C, again factor f = p · i, where i ∈ T C ⊆ W,
p ∈ F0. By 3-for-2, p ∈ W, so in fact p ∈ W ∩ F0 and hence p ∈ T F0. So again f
lifts against p, expressing f as a retract i ∈ T C; so f ∈ T C.

T F ⊆ W: exactly dual to the proof above that T C ⊆ W. Every f ∈ T F is a
retract of some p ∈ T F0 ⊆ W, so is itself in W.

W∩F ⊆ T F : suppose f ∈ W∩F . Similarly to before, factoring f = p · i, where
p ∈ F0 and i ∈ T C0 ⊆ W, we can lift i against f to express f as a retract of p. But
by 3-for-2, p ∈ W, so p ∈ W ∩ F0 ⊆ T F0, and hence f ∈ T F .

•
i

�� f ��
•

p
// •

•
i

��

•
f

��
•

r

??

p
// •

• i //

f

��

• r //

p

��

•
f

��
• • •

This completes the proof of the theorem. �

4. Characterisations of fibrations and cofibrations

Our definition of the factorisation systems explicitly provided natural classes of
fibrations and trivial fibrations, large enough to include most of the examples one
meets in practice. Can we give something similar for the cofibrations?

It turns out that in general yes, we can: constructor inclusions of inductive types.
However, a precise statement and proof of this depend on which formulation(s) of
inductive types one wants to consider; so for the sake of brevity, we will give just
an informal statement and a sketch of how the proof typically goes.

Not-Quite-Lemma 19. Suppose A(~y) is a (possibly higher) inductive family,
varying over the context ~y : ∆ of indices, defined over an ambient context of pa-
rameters Γ; and suppose c is a 0-cell constructor of A, with type

Γ, ~x :Θ ` c(~x) :A(g(~x))

(for some g : Θ → ∆). Then the context morphism (1Γ, g, c) : Γ, Θ → Γ, ∆, A is
in C; and indeed for any f : Γ′ → Γ, so is (f, f∗g, f∗c).

If c is the only constructor of A, then it is moreover in T C.
Finally, these morphisms form generating subclasses of C, T C.

Not-quite-proof. We essentially just repeat the proof of Lemma 15. For simplicity,
we suppress the paramaters Γ throughout.

MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES 9

First, note that to fill squares it suffices (by pullback) to fill triangles:

Θ
h //

g,c

��

Ξ, A

πC

��
∆, A

k //

t

<<

Ξ

Θ
h′ //

g,c
��

∆, A, k∗C

πk∗Czz
∆, A

t′
::

Now note, for the single-constructor case, that the triangle gives exactly the
premises of the elim rule: a predicate defined over the family A, and inhabitants of
this predicate for all canonical elements c(~x). So the elim and comp rule together
give us an appropriate map, and show that it’s a filler.

For the case where A has other constructors, the triangle doesn’t directly pro-
vide all the inductive premises of the elim rule—we need to know that the predicate
holds for all canonical elements, not just those of the form c(~x). However, we have
the additional assumption that the the predicate is contractible; and this contrac-
tion allows us to provide witnesses for the predicate over any other constructors
(including higher ones); so now as before, the elim and comp rules give us the
required filler.

Finally, since the factorisations provided by Lemmata 14 and 15 are all of this
form, it follows that these are generating subclasses of C, T C. �

A very nice characterisation of trivial cofibrations is given in [GG08, 5.1.1]: they
are exactly the context morphisms for which certain rules can be derived—essentially,
the rules of a one-constructor inductive type. A similarly type-theoretic character-
isation of cofibrations would be very nice, but seems elusive!

In lieu of that, one can at least give a precise characterisation by general retract
arguments, albeit a less purely type-theoretic one:

Lemma 20. A context morphism is a cofibration exactly if it is a retract of some
constructor inclusion of an inductive type.

Proof. The “if” direction follows from closure of C under retracts. For the “only
if”, note that any cofibration is a retract of the cofibration occurring in its (C, T F)
factorisation; but by Lemma 15, this may always be taken to be the constructor
inclusion in-top of a mapping cylinder. �

5. Model structures from mapping cylinders

The most obvious instance of the above construction is on snytactic type the-
ories, giving pre-model-structures on syntactic categories of type theories. Such
categories will typically not be (even finitely) complete or co-complete, nor will
the factorisations in these cases generally be functorial; so will not be full model
categories.

However, it also of course applies to semantic type theories those coming from
categorical models of this type theory. (Precisely, to the internal language of any
category with attributes admitting appropriate type-constructors; see [Car78] et
seq., surveyed in [Lum10, 1.2]).

These examples are very often complete and co-complete; and so if moreover
the factorisations are functorial (or may be modified to be so), then the pre-model
structure constructed here underlies an actual model structure.

10 P. LEF. LUMSDAINE

For instance, in the Hofmann-Streicher groupoid model ([HS98]), it is not hard
to construct non-dependent mapping cylinders by hand, and show that these are
functorial; so the results of this note give an alternate construction of the standard
model structure on Gpd.

These results may thus be seen as partially converse to the forthcoming [LS11b],
where we show that a large class of higher inductive types, including mapping
cylinders, can be modelled in any locally presentable model category, modulo (as
ever) some technical issues of coherence.

References

[Car78] John Cartmell, Generalised algebraic theories and contextual categories, Ph.D. thesis,
Oxford, 1978.

[GG08] Nicola Gambino and Richard Garner, The identity type weak factorisation system, The-

oret. Comput. Sci. 409 (2008), no. 1, 94–109, arXiv:0803.4349, doi:10.1016/j.tcs.

2008.08.030. MR 2469279

[Hov99] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, Ameri-

can Mathematical Society, Providence, RI, 1999. MR 1650134 (99h:55031)
[HS98] Martin Hofmann and Thomas Streicher, The groupoid interpretation of type theory,

Twenty-five years of constructive type theory (Venice, 1995), Oxford Logic Guides,
vol. 36, Oxford Univ. Press, New York, 1998, pp. 83–111.

[LS11a] Peter LeFanu Lumsdaine and Michael Shulman, Higher inductive types 0: Introduction,

in preparation, 2011.
[LS11b] , Higher inductive types 1: models in locally presentable model categories, in

preparation, 2011.

[Lum10] Peter LeFanu Lumsdaine, Higher categories from type theories, Ph.D. thesis, Carnegie
Mellon University, 2010.

[Lum11] , Higher inductive types: a tour of the menagerie, blog
post, April 2011, http://homotopytypetheory.org/2011/04/24/

higher-inductive-types-a-tour-of-the-menagerie.

[Str93] Thomas Streicher, Investigations Into Intensional Type Theory, Habilitationsschrift,
Ludwig-Maximilians-Universität München, November 1993.

[Voe] Vladimir Voevodsky, The equivalence axiom and univalent models of type theory, Lecture

delivered at Carnegie Mellon University, February 2010, and unpublished notes, http:
//www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/CMU_talk.pdf.

http://arxiv.org/abs/0803.4349
http://dx.doi.org/10.1016/j.tcs.2008.08.030
http://dx.doi.org/10.1016/j.tcs.2008.08.030
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/CMU_talk.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/CMU_talk.pdf

	1. Type-theoretic background
	2. Type-theoretic mapping cylinders
	3. A pre-model-structure from mapping cylinders
	4. Characterisations of fibrations and cofibrations
	5. Model structures from mapping cylinders
	References

