
A general de�nition of dependent type theories

Peter LeFanu Lumsdaine

Stockholm University

Logic Colloquium 2017, impromptu Type Theory session

adapted from Stockholm Logic Seminar, 15 Feb 2017

1 / 23



A general de�nition of dependent type theories

Peter LeFanu Lumsdaine

Stockholm University

Logic Colloquium 2017, impromptu Type Theory session

adapted from Stockholm Logic Seminar, 15 Feb 2017

1 / 23



Motivation

2 / 23



Some meta-theorems

TΠ: dependent type theory with just Π-types.

Theorem (Cartmell, Streicher)

The syntax of TΠ presents the initial contextual category with Π-type
structure.

Theorem (Hofmann)

The logical framework embedding TΠ TLF[Π] is conservative.

Theorem (Hofmann, rephrased by Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-type structure. Then
the CwA C∗ carries strictly stable Π-type structure.

3 / 23



Some meta-theorems

TΠ: dependent type theory with just Π-types.

Theorem (Cartmell, Streicher)

The syntax of TΠ presents the initial contextual category with Π-type
structure.

Theorem (Hofmann)

The logical framework embedding TΠ TLF[Π] is conservative.

Theorem (Hofmann, rephrased by Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-type structure. Then
the CwA C∗ carries strictly stable Π-type structure.

3 / 23



Some meta-theorems

TΠ: dependent type theory with just Π-types.

Theorem (Cartmell, Streicher)

The syntax of TΠ presents the initial contextual category with Π-type
structure.

Theorem (Hofmann)

The logical framework embedding TΠ TLF[Π] is conservative.

Theorem (Hofmann, rephrased by Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-type structure. Then
the CwA C∗ carries strictly stable Π-type structure.

3 / 23



Some meta-theorems

TΠ: dependent type theory with just Π-types.

Theorem (Cartmell, Streicher)

The syntax of TΠ presents the initial contextual category with Π-type
structure.

Theorem (Hofmann)

The logical framework embedding TΠ TLF[Π] is conservative.

Theorem (Hofmann, rephrased by Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-type structure. Then
the CwA C∗ carries strictly stable Π-type structure.

3 / 23



Some more meta-theorems

TETT: dependent type theory with Π-, Σ-, unit, and extensional

Id-types.

Theorem (Hofmann, straightforward extension of

Cartmell/Streicher)

The syntax of TETT presents the initial contextual category with Π-, Σ-,
unit, and extensional Id-type structure.

Theorem (straightforward extension of Hofmann)

The logical framework embedding TETT TLF[ETT] is conservative.

Theorem (straightforward extension of Hofmann /

Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

4 / 23



Some more meta-theorems

TETT: dependent type theory with Π-, Σ-, unit, and extensional

Id-types.

Theorem (Hofmann, straightforward extension of

Cartmell/Streicher)

The syntax of TETT presents the initial contextual category with Π-, Σ-,
unit, and extensional Id-type structure.

Theorem (straightforward extension of Hofmann)

The logical framework embedding TETT TLF[ETT] is conservative.

Theorem (straightforward extension of Hofmann /

Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

4 / 23



Some more meta-theorems

TETT: dependent type theory with Π-, Σ-, unit, and extensional

Id-types.

Theorem (Hofmann, straightforward extension of

Cartmell/Streicher)

The syntax of TETT presents the initial contextual category with Π-, Σ-,
unit, and extensional Id-type structure.

Theorem (straightforward extension of Hofmann)

The logical framework embedding TETT TLF[ETT] is conservative.

Theorem (straightforward extension of Hofmann /

Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

4 / 23



Some more meta-theorems

TETT: dependent type theory with Π-, Σ-, unit, and extensional

Id-types.

Theorem (Hofmann, straightforward extension of

Cartmell/Streicher)

The syntax of TETT presents the initial contextual category with Π-, Σ-,
unit, and extensional Id-type structure.

Theorem (straightforward extension of Hofmann)

The logical framework embedding TETT TLF[ETT] is conservative.

Theorem (straightforward extension of Hofmann /

Lumsdaine–Warren)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

4 / 23



Yet more meta-theorems

THoTT: dependent type theory with Π-, Σ-, unit, Id-, W-types, �nite

sums, homotopy-coequalisers, and an ω-hierarchy of univalent

universes closed under these.

Theorem(?) (straightforward(???) extension of C./S.)

The syntax of THoTT presents the initial contextual category with
suitable logical structure.

Theorem(?) (straightforward(???) extension of H.)

The logical framework embedding THoTT TLF[HoTT] is conservative.

Theorem(?) (straightforward(???) extension of H./L.–W.)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

5 / 23



Yet more meta-theorems

THoTT: dependent type theory with Π-, Σ-, unit, Id-, W-types, �nite

sums, homotopy-coequalisers, and an ω-hierarchy of univalent

universes closed under these.

Theorem(?) (straightforward(???) extension of C./S.)

The syntax of THoTT presents the initial contextual category with
suitable logical structure.

Theorem(?) (straightforward(???) extension of H.)

The logical framework embedding THoTT TLF[HoTT] is conservative.

Theorem(?) (straightforward(???) extension of H./L.–W.)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

5 / 23



Yet more meta-theorems

THoTT: dependent type theory with Π-, Σ-, unit, Id-, W-types, �nite

sums, homotopy-coequalisers, and an ω-hierarchy of univalent

universes closed under these.

Theorem(?) (straightforward(???) extension of C./S.)

The syntax of THoTT presents the initial contextual category with
suitable logical structure.

Theorem(?) (straightforward(???) extension of H.)

The logical framework embedding THoTT TLF[HoTT] is conservative.

Theorem(?) (straightforward(???) extension of H./L.–W.)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

5 / 23



Yet more meta-theorems

THoTT: dependent type theory with Π-, Σ-, unit, Id-, W-types, �nite

sums, homotopy-coequalisers, and an ω-hierarchy of univalent

universes closed under these.

Theorem(?) (straightforward(???) extension of C./S.)

The syntax of THoTT presents the initial contextual category with
suitable logical structure.

Theorem(?) (straightforward(???) extension of H.)

The logical framework embedding THoTT TLF[HoTT] is conservative.

Theorem(?) (straightforward(???) extension of H./L.–W.)

C a comprehension category with pseudo-stable Π-, Σ-, etc. structure.
Then the CwA C∗ carries strictly stable Π-, Σ-, etc. structure.

5 / 23



General project

Hope to generalise all of these (and other theorems/constructions) —

to allow statements like:

Dream

For any dependent type theory T, the syntax of T presents the initial
contextual category with T-structure.

I Avoid handwaving “straightforward” extensions from toy

systems to much larger cases

I Give single formalisation that provides results/constructions

o�-the-shelf for your new extension of type theory

I Articulate precise assumptions required in

results/constructions, e.g. “For any extension of ITT

axiomatisable without further judgemental equality rules . . . ”

Hard part: not the proofs, but the de�nition of general type theories.

6 / 23



General project

Hope to generalise all of these (and other theorems/constructions) —

to allow statements like:

Dream

For any dependent type theory T, the syntax of T presents the initial
contextual category with T-structure.

I Avoid handwaving “straightforward” extensions from toy

systems to much larger cases

I Give single formalisation that provides results/constructions

o�-the-shelf for your new extension of type theory

I Articulate precise assumptions required in

results/constructions, e.g. “For any extension of ITT

axiomatisable without further judgemental equality rules . . . ”

Hard part: not the proofs, but the de�nition of general type theories.

6 / 23



Why not LF/PTS?

Why isn’t the logical framework a satisfactory solution? Or pure

type systems, or other existing setups?

0. For many purposes, they are totally satisfactory! But not all:

1. Don’t give exactly the type theories/structures we expected

2. Justi�cation depends in part on Hofmann’s conservativity

theorem—one of the results we want to generalise!

3. Still quite non-trivial to carve out generality/conditions for the

theorems above.

4. Unclear how to give account of weak structure with LF (e.g.

pseudo-stable, strictly stable).

7 / 23



Why not LF/PTS?

Why isn’t the logical framework a satisfactory solution? Or pure

type systems, or other existing setups?

0. For many purposes, they are totally satisfactory!

But not all:

1. Don’t give exactly the type theories/structures we expected

2. Justi�cation depends in part on Hofmann’s conservativity

theorem—one of the results we want to generalise!

3. Still quite non-trivial to carve out generality/conditions for the

theorems above.

4. Unclear how to give account of weak structure with LF (e.g.

pseudo-stable, strictly stable).

7 / 23



Why not LF/PTS?

Why isn’t the logical framework a satisfactory solution? Or pure

type systems, or other existing setups?

0. For many purposes, they are totally satisfactory! But not all:

1. Don’t give exactly the type theories/structures we expected

2. Justi�cation depends in part on Hofmann’s conservativity

theorem—one of the results we want to generalise!

3. Still quite non-trivial to carve out generality/conditions for the

theorems above.

4. Unclear how to give account of weak structure with LF (e.g.

pseudo-stable, strictly stable).

7 / 23



The syntax–semantics spectrum

Long road from foo.v to mathematical models. . .

I Concrete syntax: your Coq �les

I (. . . lexing, parsing. . . ) Sugary abstract syntax: Coq’s internal

representation

I (. . . desugaring, elaboration. . . ) Fully elaborated, conceptually

minimal abstract syntax: as in most theory literature

I (. . . initiality theorems. . . ) Strict algebraic models: contextual

categories, categories with attributes. . .

I (. . . general coherence theorems. . . ) Weak algebraic models:

comprehension categories, . . .

I (. . . categorical analysis, ad hoc coherence constructions. . . )

Natural mathematical settings/examples: toposes, Quillen

model categories, . . .

Hope all levels should be generalised! — eventually.

Focus for today: where syntax and semantics meet.

8 / 23



The syntax–semantics spectrum

Long road from foo.v to mathematical models. . .

I Concrete syntax: your Coq �les

I (. . . lexing, parsing. . . ) Sugary abstract syntax: Coq’s internal

representation

I (. . . desugaring, elaboration. . . ) Fully elaborated, conceptually

minimal abstract syntax: as in most theory literature

I (. . . initiality theorems. . . ) Strict algebraic models: contextual

categories, categories with attributes. . .

I (. . . general coherence theorems. . . ) Weak algebraic models:

comprehension categories, . . .

I (. . . categorical analysis, ad hoc coherence constructions. . . )

Natural mathematical settings/examples: toposes, Quillen

model categories, . . .

Hope all levels should be generalised! — eventually.

Focus for today: where syntax and semantics meet.

8 / 23



The syntax–semantics spectrum

Long road from foo.v to mathematical models. . .

I Concrete syntax: your Coq �les

I (. . . lexing, parsing. . . ) Sugary abstract syntax: Coq’s internal

representation

I (. . . desugaring, elaboration. . . ) Fully elaborated, conceptually

minimal abstract syntax: as in most theory literature

I (. . . initiality theorems. . . ) Strict algebraic models: contextual

categories, categories with attributes. . .

I (. . . general coherence theorems. . . ) Weak algebraic models:

comprehension categories, . . .

I (. . . categorical analysis, ad hoc coherence constructions. . . )

Natural mathematical settings/examples: toposes, Quillen

model categories, . . .

Hope all levels should be generalised! — eventually.

Focus for today: where syntax and semantics meet.

8 / 23



The syntax–semantics spectrum

Long road from foo.v to mathematical models. . .

I Concrete syntax: your Coq �les

I (. . . lexing, parsing. . . ) Sugary abstract syntax: Coq’s internal

representation

I (. . . desugaring, elaboration. . . ) Fully elaborated, conceptually

minimal abstract syntax: as in most theory literature

I (. . . initiality theorems. . . ) Strict algebraic models: contextual

categories, categories with attributes. . .

I (. . . general coherence theorems. . . ) Weak algebraic models:

comprehension categories, . . .

I (. . . categorical analysis, ad hoc coherence constructions. . . )

Natural mathematical settings/examples: toposes, Quillen

model categories, . . .

Hope all levels should be generalised! — eventually.

Focus for today: where syntax and semantics meet.

8 / 23



The syntax–semantics spectrum

Long road from foo.v to mathematical models. . .

I Concrete syntax: your Coq �les

I (. . . lexing, parsing. . . ) Sugary abstract syntax: Coq’s internal

representation

I (. . . desugaring, elaboration. . . ) Fully elaborated, conceptually

minimal abstract syntax: as in most theory literature

I (. . . initiality theorems. . . ) Strict algebraic models: contextual

categories, categories with attributes. . .

I (. . . general coherence theorems. . . ) Weak algebraic models:

comprehension categories, . . .

I (. . . categorical analysis, ad hoc coherence constructions. . . )

Natural mathematical settings/examples: toposes, Quillen

model categories, . . .

Hope all levels should be generalised! — eventually.

Focus for today: where syntax and semantics meet.

8 / 23



Today’s special

We propose a general de�nition of syntactic dependent type

theories, which:

I includes the speci�c example type theories above

I su�ces for the example theorems/constructions above

I is reasonably natural

I is as conventional as possible, in speci�c cases

(Joint work with Bauer, Haselwarter, Winterhalter.)

One major restriction: consider only Martin-Löf’s judgement forms

(contexts, types, terms, ≡) and structural rules.

Important systems thus not covered: Pure Type Systems; Calculus of

Inductive Constructions; Cubical TT; anything linear. . .

Expected semantic counterpart: a corresponding class of essentially

algebraic extensions of contextual categories.

(A closely related de�nition has been given independently by Isaev.)

9 / 23



Today’s special

We propose a general de�nition of syntactic dependent type

theories, which:

I includes the speci�c example type theories above

I su�ces for the example theorems/constructions above

I is reasonably natural

I is as conventional as possible, in speci�c cases

(Joint work with Bauer, Haselwarter, Winterhalter.)

One major restriction: consider only Martin-Löf’s judgement forms

(contexts, types, terms, ≡) and structural rules.

Important systems thus not covered: Pure Type Systems; Calculus of

Inductive Constructions; Cubical TT; anything linear. . .

Expected semantic counterpart: a corresponding class of essentially

algebraic extensions of contextual categories.

(A closely related de�nition has been given independently by Isaev.)

9 / 23



Today’s special

We propose a general de�nition of syntactic dependent type

theories, which:

I includes the speci�c example type theories above

I su�ces for the example theorems/constructions above

I is reasonably natural

I is as conventional as possible, in speci�c cases

(Joint work with Bauer, Haselwarter, Winterhalter.)

One major restriction: consider only Martin-Löf’s judgement forms

(contexts, types, terms, ≡) and structural rules.

Important systems thus not covered: Pure Type Systems; Calculus of

Inductive Constructions; Cubical TT; anything linear. . .

Expected semantic counterpart: a corresponding class of essentially

algebraic extensions of contextual categories.

(A closely related de�nition has been given independently by Isaev.)

9 / 23



Syntax

10 / 23



General outline

In practice, a type theory is speci�ed by:

I signature for raw syntax (symbols, arities with binding);

I rules for the typing judgements

Signature: de�nitions already established (Aczel, Belo; Ahrens,

Matthes, Uustalu); quite clean, straightforward.

Interesting part: what are rules?

11 / 23



Rules vs. closure condition

Key distinction: rules vs. closure conditions.

Rule as you

write it down:

` Γ cxt
Γ ` A type

Γ, x:A ` B type

Γ ` Πx:AB type

Interpretation of rule as closure condition on

judgement relations:

Given any

raw context Γ, s.t. ` Γ cxt is derivable,

raw type A, s.t. Γ ` A type is derivable,

raw type B, s.t. Γ, x:A ` B type is derivable,

then Γ ` Πx:A type is derivable.

Common explanation: the formal thing is the closure condition;

“rule” is just informal notation.

We take the “rule” more seriously: a syntactic object we recognise

and typecheck; speci�cation of a type theory is a family of rules.

Any rule gives rise to a closure condition, used to de�ne the typing

judgements.

12 / 23



Rules vs. closure condition

Key distinction: rules vs. closure conditions.

Rule as you

write it down:

` Γ cxt
Γ ` A type

Γ, x:A ` B type

Γ ` Πx:AB type

Interpretation of rule as closure condition on

judgement relations:

Given any

raw context Γ, s.t. ` Γ cxt is derivable,

raw type A, s.t. Γ ` A type is derivable,

raw type B, s.t. Γ, x:A ` B type is derivable,

then Γ ` Πx:A type is derivable.

Common explanation: the formal thing is the closure condition;

“rule” is just informal notation.

We take the “rule” more seriously: a syntactic object we recognise

and typecheck; speci�cation of a type theory is a family of rules.

Any rule gives rise to a closure condition, used to de�ne the typing

judgements.

12 / 23



Well-typedness of rules

Can’t have arbitrary expressions in rules: must type-check suitably.

` Γ cxt Γ ` A type
Γ, x:A ` B type
Γ, x:A ` b : B

Γ ` λx:A. b : Πx:BA

Note: to type-check conclusion of Π-abstr, need to use Π-form.

So: put well-ordering on rules. Type-check later rules over earlier

ones.

13 / 23



Well-typedness of rules

Can’t have arbitrary expressions in rules: must type-check suitably.

` Γ cxt Γ ` A type
Γ, x:A ` B type
Γ, x:A ` b : B

Γ ` λx:A. b : Πx:BA Πx:AB

Note: to type-check conclusion of Π-abstr, need to use Π-form.

So: put well-ordering on rules. Type-check later rules over earlier

ones.

13 / 23



Well-typedness of rules

Can’t have arbitrary expressions in rules: must type-check suitably.

` Γ cxt Γ ` A type
Γ, x:A ` B type
Γ, x:A ` b : B

Γ ` λx:A. b : Πx:BA Πx:AB

Note: to type-check conclusion of Π-abstr, need to use Π-form.

So: put well-ordering on rules. Type-check later rules over earlier

ones.

13 / 23



Ambient contexts

Intend all rules to hold over arbitrary contexts. (E.g. “necessitation”

rule not covered.)

` A type
x:A ` B type

` Πx:AB type

Γ assumed for every rule. Plays no rôle in typechecking the rules.

Conclusion: It’s part of implementation as closure condition, not

speci�cation of the rule itself.

Omitting ambient context in writing rules—not just abuse of

notation!

14 / 23



Ambient contexts

Intend all rules to hold over arbitrary contexts. (E.g. “necessitation”

rule not covered.)

` Γ cxt
Γ ` A type

Γ, x:A ` B type

Γ ` Πx:AB type

Γ assumed for every rule. Plays no rôle in typechecking the rules.

Conclusion: It’s part of implementation as closure condition, not

speci�cation of the rule itself.

Omitting ambient context in writing rules—not just abuse of

notation!

14 / 23



Ambient contexts

Intend all rules to hold over arbitrary contexts. (E.g. “necessitation”

rule not covered.)

` Γ cxt
Γ ` A type

Γ, x:A ` B type

Γ ` Πx:AB type

Γ assumed for every rule. Plays no rôle in typechecking the rules.

Conclusion: It’s part of implementation as closure condition, not

speci�cation of the rule itself.

Omitting ambient context in writing rules—not just abuse of

notation!

14 / 23



Ambient contexts

Intend all rules to hold over arbitrary contexts. (E.g. “necessitation”

rule not covered.)

` A type
x:A ` B type

` Πx:AB type

Γ assumed for every rule. Plays no rôle in typechecking the rules.

Conclusion: It’s part of implementation as closure condition, not

speci�cation of the rule itself.

Omitting ambient context in writing rules—not just abuse of

notation!

14 / 23



Metavariables

Closure conditions involve metavariables. What represents these in

syntax of rules?

` A type x:A ` B

(x)

type
` f : Πx:AB

(x)

` a : A

` appx:A.B

(x)

(f , a) : B[a/x]

Approach 1: speci�c syntactic entity.

I then also need explicit substitution, and rules for that;

I essentially duplicating machinery of variable-handling,

substitution. . .

I this is just padding

15 / 23



Metavariables

Closure conditions involve metavariables. What represents these in

syntax of rules?

` A type x:A ` B

(x)

type
` f : Πx:AB

(x)

` a : A

` appx:A.B

(x)

(f , a) : B[a/x]

Approach 1: speci�c syntactic entity.

I then also need explicit substitution, and rules for that;

I essentially duplicating machinery of variable-handling,

substitution. . .

I this is just padding

15 / 23



Metavariables

Closure conditions involve metavariables. What represents these in

syntax of rules?

` A type x:A ` B

(x)

type
` f : Πx:AB

(x)

` a : A

` appx:A.B

(x)

(f , a) : B[a/x]

Approach 2: symbols in a temporarily-extended signature.

I re-uses existing machinery

I substitution appears in implementation as closure condition

I requires translating syntax between di�erent signatures (but

that’d be needed later anyway)

15 / 23



Metavariables

Closure conditions involve metavariables. What represents these in

syntax of rules?

` A type x:A ` B(x) type
` f : Πx:AB(x) ` a : A

` appx:A.B(x)(f , a) : B(a)

Approach 2: symbols in a temporarily-extended signature.

I re-uses existing machinery

I substitution appears in implementation as closure condition

I requires translating syntax between di�erent signatures (but

that’d be needed later anyway)

15 / 23



De�nition, stage 1

Ready now for full de�nition, in several stages.

De�nitions

I A (binding) arity: a �nite set (“arguments”), each marked with a

syntactic class (type/term) and a �nite set (“bound variables”).
1

I A (binding) signature: a set (“symbols”), each with a syntactic

class and an arity.

De�nitions

I raw syntax over a signature

I substitution on raw syntax

I translation of raw syntax along signature morphisms

I basic properties of all these

1
Or use natural numbers instead of �nite sets. . . Treatment of variables

suppressed today.

16 / 23



De�nition, stage 1

Ready now for full de�nition, in several stages.

De�nitions

I A (binding) arity: a �nite set (“arguments”), each marked with a

syntactic class (type/term) and a �nite set (“bound variables”).
1

I A (binding) signature: a set (“symbols”), each with a syntactic

class and an arity.

De�nitions

I raw syntax over a signature

I substitution on raw syntax

I translation of raw syntax along signature morphisms

I basic properties of all these

1
Or use natural numbers instead of �nite sets. . . Treatment of variables

suppressed today.

16 / 23



De�nition, stage 2

De�nition

A raw rule of arity a, over signature Σ:

I premises: well-ordered collection of raw judgements

I conclusion: single raw judgement

I all over Σ + a: extension of Σ with symbols for arguments of a
I each argument of a introduced by a unique premise

De�nitions

I instantiation of an arity over a signature and a raw context

I given instantiation of a over Σ: translation of raw syntax over

Σ + a to over Σ (using substitution!)

I implementation of raw rule as closure condition: for every

instantiation of its arity, if translations of premises hold, so does

translation of conclusion

I derivability over a collection of raw rules

17 / 23



De�nition, stage 2

De�nition

A raw rule of arity a, over signature Σ:

I premises: well-ordered collection of raw judgements

I conclusion: single raw judgement

I all over Σ + a: extension of Σ with symbols for arguments of a
I each argument of a introduced by a unique premise

De�nitions

I instantiation of an arity over a signature and a raw context

I given instantiation of a over Σ: translation of raw syntax over

Σ + a to over Σ (using substitution!)

I implementation of raw rule as closure condition: for every

instantiation of its arity, if translations of premises hold, so does

translation of conclusion

I derivability over a collection of raw rules

17 / 23



De�nition, stage 3

De�nition

Raw rule is well-typed relative to a collection T of raw rules if:

I presuppositions of each premise are derivable over T plus

earlier premises

I presuppositions of conclusion are derivable over T

(Subtlety: not really over T, but over its translation from Σ to Σ + a.)

De�nition

A fully verbose type theory:

I signature;

I well-ordered
2

collection of raw rules,

I each raw rule well-typed over earlier raw rules of collection

I each symbol introduced by a unique rule of correct arity;

I each symbol also has suitable congruence rule.

2
i.e. constructively well-founded partial order

18 / 23



De�nition, stage 3

De�nition

Raw rule is well-typed relative to a collection T of raw rules if:

I presuppositions of each premise are derivable over T plus

earlier premises

I presuppositions of conclusion are derivable over T

(Subtlety: not really over T, but over its translation from Σ to Σ + a.)

De�nition

A fully verbose type theory:

I signature;

I well-ordered
2

collection of raw rules,

I each raw rule well-typed over earlier raw rules of collection

I each symbol introduced by a unique rule of correct arity;

I each symbol also has suitable congruence rule.

2
i.e. constructively well-founded partial order

18 / 23



Main de�nition, version 1

De�nition

An (economically speci�ed) type theory:

I signature;

I well-ordered collection of raw rules,

I each raw rule well-typed over

I standard structural core,

I earlier raw rules of collection,

I associated congruence rules for all type/term rules;

I 1-1 correspondence: each symbol of signature introduced by a

unique type/term rule

19 / 23



Re�ections on version 1

Success: have “cut the knot” of dependency between rules,

signatures, typing, etc.

Issue: make substantial use of equality reasoning, inconvenient in

formalisation:

I Morphisms of signatures, for translating between base and

extended syntaxes

I “Each argument introduced by a unique premise” within each

rule

I “Each symbol introduced by a unique rule” in overall type

theory

Re�ned approach: cut the knot di�erently to avoid equality

reasoning.

20 / 23



Re�ections on version 1

Success: have “cut the knot” of dependency between rules,

signatures, typing, etc.

Issue: make substantial use of equality reasoning, inconvenient in

formalisation:

I Morphisms of signatures, for translating between base and

extended syntaxes

I “Each argument introduced by a unique premise” within each

rule

I “Each symbol introduced by a unique rule” in overall type

theory

Re�ned approach: cut the knot di�erently to avoid equality

reasoning.

20 / 23



Main de�nition, version 2

Back up a bit; remove redundant information from raw rules.

De�nition

A prepped rule of arity a, over Σ, with conclusion form j:
I an arity a′, enumerating the equality premises;

I a well-founded relation on a + a′ (the collection of all premises);

I for each premise: a raw judgement boundary, over Σ extended

by symbols for earlier type/term premises;

I (heads of type/term premises then taken as the corresponding

symbols of Σ + a, applied to their binding variables);

I for conclusion: a raw judgement boundary of form j, over Σ + a;

I (once rule included in a TT: conclusion head taken as a

corresponding symbol of the signature, applied to the generic

arguments of a)

A prepped rule is well-typed if the resulting raw rule is.

21 / 23



Main de�nition, version 2

De�nition

A type theory:

I a family R of arities, labelled with judgement forms (indexing

the rules);

I a well-founded relation on R;

I for each r : R with arity a and judgement form j:
I a prepped rule of arity a, with conclusion form j,
I over the signature Σ≺r : symbols given by the earlier type/term

rules of R,

I well-typed over

I standard structural core,

I earlier raw rules of R,

I associated congruence rules for all type/term rules.

No use of equality reasoning!

Arguably maybe further from practice than �rst version.

22 / 23



Main de�nition, version 2

De�nition

A type theory:

I a family R of arities, labelled with judgement forms (indexing

the rules);

I a well-founded relation on R;

I for each r : R with arity a and judgement form j:
I a prepped rule of arity a, with conclusion form j,
I over the signature Σ≺r : symbols given by the earlier type/term

rules of R,

I well-typed over

I standard structural core,

I earlier raw rules of R,

I associated congruence rules for all type/term rules.

No use of equality reasoning!

Arguably maybe further from practice than �rst version.

22 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23



Summary

I Motivation: give generality for meta-theorems of type theory

I Have: proposed de�nition of general (syntactic) type theories

I Work in progress: formalisation of this de�nition

(Bauer–Haselwarter–Lumsdaine–Winterhalter)

I Have: ≥ 2 proposed de�nitions of general (semantic/algebraic)

type theories (certain ess. alg. extensions of theory of CwA’s)

(proposals by Isaev, Lumsdaine, . . . ?)

I Work in progress: correspondence between these semantic and

syntactic de�nitions

I Future work: prove motivating meta-theorems in generality

I Further work: generalise the judgement forms considered

I Further work: connect general de�nitions to other points on

syntax–semantics spectrum: more usable syntaxes, more

natural semantics

23 / 23


	Motivation
	Syntax

