
Formalising semantics
of dependent type theory
in dependent type theory

(work in progress)

Peter LeFanu Lumsdaine
joint work with H̊akon Gylterud, Erik Palmgren

DMV Hamburg, 25 September 2015

1 / 19

Modelling DTT

Early models of dependent type theory: constructed by hand.

Construction: multiple large mutual inductions over
syntax—types, terms, judgement derivations. . .

Many moving parts to deal with: interaction with substitution,
α-conversion, . . .

But: structure of construction similar for many models.
Redundancy, duplication of effort!

2 / 19

Algebraic semantics

Algebraic semantics (Cartmell and followers): aim to abstract
away the common structure of models.

Have algebraic structure, category with attributes (or variants),
encoding common structural core of DTT. Then (template):
define extra operations on a CwA corresponding to desired
logical connectives, and prove:

Theorem (Cartmell, Streicher, Hofmann, . . .)

The syntax of dependent type theory with logical connectives
XYZ forms a CwA with XYZ-structure; and in fact this is the
initial CwA with XYZ-structure.

Encapsulates the big induction proof once and for all.

Now any CwA with XYZ-structure carries canonical
interpretation of syntax. So XYZ-CwA’s give good notion of
model of DTT with XYZ.

3 / 19

Algebraic semantics

Very convenient technique. Since then: most (denotational)
models of DTT constructed along these lines. (Streicher,
Hofmann, Hofmann-Streicher, Coquand et al, Voevodsky, etc.)

Also, various good theorems provable using CwA’s and
relatives: conservativity of logical framework presentation
(Hofmann), coherence theorems (Hofmann, Voevodsky,
Lumsdaine–Warren), etc.

Lots of good work done with this setup.

Everything in the garden is lovely?

Actually: situation not quite so satisfactory.

4 / 19

Dissatisfactions

Most obviously: no general theorem.

In practice: “everyone knows” straightforward to extend
definitions and theorem to any reasonable logical rules.

General Belief

Any reasonable logical rules correspond to certain struture on
CwA’s; and the snytactic CwA of DTT with those rules is the
initial CwA with that structure.

But precise general statement: difficult to formulate! What
even are “reasonable” rules?

“

I shall not today attempt further to define the kinds of material
I understand to be embraced within that shorthand description,
and perhaps I could never succeed in intelligibly doing so. But I
know it when I see it [. . .]”

— Potter Stewart, U.S. S.C.J., Jacobellis v. Ohio 1964
5 / 19

Dissatisfactions

More surprisingly: even specific cases hard to find/give.

Only 2 detailed proofs in literature (as far as I can find):
Streicher Habilitationthesis, Hofmann Thesis.

Various other sketches; most contain (minor) errors.

“

People say that de Bruijn indices and explicit substitutions are
difficult to implement. I agree, I spent far too long debugging
my code. But because every bug crashed and burned my
program immediately, I at least knew I was not done. In
contrast, “manual” substitutions hide their bugs really well, and
so are even more difficult to get right.”

— Andrej Bauer, How to implement DTT, III

Extending: conceptually straightforward, but quite intricate.
Should we be comfortable saying “straightforward”?

6 / 19

Long-term goals

Goal: generalise setting and theorems. Define reasonable class
of type theories, and corresponding algebraic structures.

Not hard to make proposals; hard to be sure they’re right.

Fit-for-purpose test: can we generalise theorems, esp. the
initiality theorem?

“Warm-up”: really get to know the existing proofs of specfic
cases. How?

“

Formalise, formalise, formalise! (Only be sure always to call it
please research.)”

— Tom Lehrer, Lobachevsky (adapted)

7 / 19

Short-term goals

Goal: formalise the initiality theorem, for a specific small-ish
type theory. Roughly, formalise Streicher’s result and proof.

(Also: examples of CwA’s. But today I’ll focus on initiality
theorem.)

Formalise in what? In Coq—in dependent type theory!

Explanation 1: MLTT/CIC our preferred general foundation.

Explanation 2: “When you have a hammer, everything looks
like a nail.”

Secondary payoff of formalisation: forkability. Even with just
small core formalised, other authors can adapt to larger type
theories as needed. Referees can verify “straightforward
extension” without re-checking whole proof by hand.

8 / 19

Gödel?

FAQ: doesn’t Gödel say this is impossible (unless TT
inconsistent)?

Answer 0: No!

Answer 1: Consider situation with ZFC. Can formalise the
meta-theory (proof theory, model theory) of arbitrary
first-order theories, including ZFC itself. Just can’t prove
models of ZFC exist (unless it’s inconsistent).

Answer 2: even if you want model existence, don’t need to
fundamentally change meta-theory. Just need extra
assumptions (e.g. universe existence).

9 / 19

Overall project map

Object theory: for now, just DTT with function types, one base
type. Aim: extend later.

Meta-theory: CIC, but not using Prop: i.e. DTT with function
types, inductive types, (predicative) universes. (Probably one
universe enough.) Aim: keep fixed!

Five main components:

1. syntax [done];

2. corresponding algebraic structures [done];

3. interpretation function [in progress];

4. syntactic category;

5. initiality.

10 / 19

Design decisions 1

How to formalise syntax?

Nothing fancy! As bricks-and-mortar as possible.

I Raw expressions, with typing judgements afterwards. NOT
inductive-inductive, nominal, HOAS etc.

I Raw expressions as labelled trees, not “parseable strings of
symbols”.

I Named variables/identifiers, not de Bruijn indices.
(Precisely: type V of variables/identifiers, assumed infinite
and with decidable equality.)

I Full annotation: e.g. appA,B(f, a), not just app(f, a).

Guiding principle: does it fit how we think of syntax when
using it?

11 / 19

Design decisions 2

How to formalise algebraic semantics?

Definition

(Classical.) A category with attributes:

I category C;

I functor Ty : Cop → Set;

I for Γ ∈ obC, A ∈ Ty(Γ), object and map πA : Γ.A→ Γ;

I for f : Γ′ → Γ, A ∈ Ty(Γ), map q(f,A) : Γ′.A[f]→ Γ.A,
exhibiting πA[f] as pullback of πA along f ;

I a distinguished object 1 (optional).

12 / 19

Design decisions 2

We use E-categories with attributes: roughly, CwA’s based on
setoids.

Definition

As a CwA, but

I obC an arbitrary type;

I all other sets become setoids (e.g. hom-setoids C(Γ′,Γ));

I maps between setoids respect setoid equalities;

I context extension becomes functor D(Ty(Γ))→ C/Γ.

Cons, compared to HoTT (pre-)categories: A bit more work in
some spots, e.g. explicitly stating how dependent operations
respect equality.

Pros: Very foundation-agnostic: interpretable in both HoTT
(with univalence, non-set categories) and classical foundations
(with UIP). Very constructive: no quotients etc.

13 / 19

Streicher’s proof

Streicher: constructs interpretation in two stages.

First: define a partial interpretation on “raw judgements”. (By
induction on raw syntax.)

E.g. for a “raw type judgement” Γ ` A, give a (possibly-defined)
semantic context and semantic type over it, i.e.

[[B1]] ∈ Ty(1),

[[B2]] ∈ Ty(1.[[B1]]),

...

[[Bn]] ∈ Ty(1.[[B1]]. · · · .[[Bn−1]]),

[[A]] ∈ Ty(1.[[B1]]. · · · .[[Bn]]).

Second: prove that for derivable judgments, this is defined. (By
induction on derivations.)

14 / 19

Novelty 1

We split into three stages, not just two:

1. A priori, give multi-valued function (neither uniqueness nor
existence of values assumed);

2. then prove uniqueness, giving a partial function;

3. then prove existence, giving a function.

Implementation: define operations M , P so that:

I multi-valued functions A(B are functions A→M(B);

I partial functions A ⇀ B are setoid maps A→ P (B).

In fact: M(−) and P (−) form monads, in the functional
programming sense! Very congenial to program with.

15 / 19

Novelty 2

Instead of interpreting whole raw judgements, we interpret the
principal part of a judgement, given intended interpretations of
the presuppositions.

“Γ ` A type.” For a raw type expression A, and any semantic
context1 Γ, have a (multi-/partial-) type [[A]]Γ ∈ Ty(Γ)

“Γ ` t : A.” For a raw term expression t, a semantic context Γ,
and (semantic) type A ∈ Ty(Γ), have a (multi-/partial-) section
[[t]]Γ,A of πA : Γ.A→ Γ.

I Allows interpretation to be structurally inductive on single
raw expressions.

I Reduces use of equality of semantic contexts, and resultant
coherence isomorphisms.

1actually not exactly; see next slide
16 / 19

Novelty 3

Actually: we throw out semantic contexts entirely!

Interpret syntactic contexts as objects equipped with
environments.

Definition

An environment on Γ ∈ obC: a finite partial map from V to
pairs (A, t), where A ∈ Ty(Γ), and t is a section of πA.

So: for raw type A, and Γ ∈ obC, E ∈ Env(Γ), interpretation is
a (multi-/partial-) [[A]]Γ,E ∈ Ty(X).

I Further reduces equalities, coherence isomorphisms.

I Simplifies reindexing/substitution lemmas: environments
can be reindexed.

I A “just right” abstraction: carries exactly the information
used in interpreting an expression. (Environment is
consulted just when expression is a variable.)

17 / 19

Local road map

Outline of interpretation construction (mostly but not entirely
done):

1. Multi-valued interpretation. (Induction on expressions.)

2. Stability under reindexing, environment extension, and
equality of semantic arguments. (Induction on expressions;
inextricably mutual.)

3. Behaviour under substitution into expressions. (Induction
on expressions.)

4. Uniqueness: partial interpretation. (Induction on
expressions.)

5. Partial interpretation of (syntactic) contexts, as
objects-with-environments. (Induction on contexts.)

6. Definedness: full interpretation of well-typed judgements.
(Induction on derivation.)

18 / 19

Summary

Payoffs

I Well-developed libraries on CwAs and syntax.

I Forkable/extendable proof of interpretation theorem (and
eventually initiality).

I Examples of CwA’s.

I Better understanding towards generalisation.

Current conclusions

I Yeeeees. . . theorem should extend “straightforwardly” (if
laboriously) to “reasonable type theories”.

I But: direct approach probably not feasible for general
statement. Need to go via intermediate abstractions.

19 / 19

	Big picture
	Current project

