Formalising semantics
of dependent type theory
in dependent type theory

(work in progress)

Peter LeFanu Lumsdaine
joint work with Héakon Gylterud, Erik Palmgren

DMV Hamburg, 25 September 2015



Modelling DTT

Early models of dependent type theory: constructed by hand.

Construction: multiple large mutual inductions over
syntax—types, terms, judgement derivations. ..

Many moving parts to deal with: interaction with substitution,
a-conversion, . . .

But: structure of construction similar for many models.
Redundancy, duplication of effort!

2/19



Algebraic semantics

Algebraic semantics (Cartmell and followers): aim to abstract
away the common structure of models.

Have algebraic structure, category with attributes (or variants),
encoding common structural core of DTT. Then (template):
define extra operations on a CwA corresponding to desired
logical connectives, and prove:

Theorem (Cartmell, Streicher, Hofmann, ...)

The syntax of dependent type theory with logical connectives
XYZ forms a CwA with XYZ-structure; and in fact this is the
initial CwA with XYZ-structure.

Encapsulates the big induction proof once and for all.

Now any CwA with XYZ-structure carries canonical
interpretation of syntax. So XYZ-CwA’s give good notion of
model of DTT with XYZ.

3/19



Algebraic semantics

Very convenient technique. Since then: most (denotational)
models of DTT constructed along these lines. (Streicher,
Hofmann, Hofmann-Streicher, Coquand et al, Voevodsky, etc.)

Also, various good theorems provable using CwA’s and
relatives: conservativity of logical framework presentation
(Hofmann), coherence theorems (Hofmann, Voevodsky,
Lumsdaine-Warren), etc.

Lots of good work done with this setup.
Everything in the garden is lovely?

Actually: situation not quite so satisfactory.

1 /19



Dissatisfactions
Most obviously: no general theorem.

In practice: “everyone knows” straightforward to extend
definitions and theorem to any reasonable logical rules.

General Belief

Any reasonable logical rules correspond to certain struture on
CwA’s; and the snytactic CwA of DTT with those rules is the
initial CwA with that structure.

But precise general statement: difficult to formulate! What
even are “reasonable” rules?

«

I shall not today attempt further to define the kinds of material
I understand to be embraced within that shorthand description,
and perhaps I could never succeed in intelligibly doing so. But I
know it when I see it [...]”

— Potter Stewart, U.S. S.C.J., Jacobellis v. Ohio 1964



Dissatisfactions
More surprisingly: even specific cases hard to find/give.

Only 2 detailed proofs in literature (as far as I can find):
Streicher Habilitationthesis, Hofmann Thesis.

Various other sketches; most contain (minor) errors.

«

People say that de Bruijn indices and explicit substitutions are
difficult to implement. I agree, I spent far too long debugging
my code. But because every bug crashed and burned my
program immediately, I at least knew I was not done. In
contrast, “manual” substitutions hide their bugs really well, and
so are even more difficult to get right.”

— Andrej Bauer, How to implement DTT, III

Extending: conceptually straightforward, but quite intricate.
Should we be comfortable saying “straightforward”?

6/19



Long-term goals

Goal: generalise setting and theorems. Define reasonable class
of type theories, and corresponding algebraic structures.

Not hard to make proposals; hard to be sure they’re right.

Fit-for-purpose test: can we generalise theorems, esp. the
initiality theorem?

“Warm-up”: really get to know the existing proofs of specfic
cases. How?

«

Formalise, formalise, formalise! (Only be sure always to call it
please research.)”
— Tom Lehrer, Lobachevsky (adapted)

19



Short-term goals
Goal: formalise the initiality theorem, for a specific small-ish
type theory. Roughly, formalise Streicher’s result and proof.

(Also: examples of CwA’s. But today I'll focus on initiality
theorem.)

Formalise in what? In Coq—in dependent type theory!
Explanation 1: MLTT/CIC our preferred general foundation.

Explanation 2: “When you have a hammer, everything looks
like a nail.”

Secondary payoff of formalisation: forkability. Even with just
small core formalised, other authors can adapt to larger type
theories as needed. Referees can verify “straightforward
extension” without re-checking whole proof by hand.

8/19



Godel?

FAQ: doesn’t Godel say this is impossible (unless TT
inconsistent)?

Answer 0: No!

Answer 1: Consider situation with ZFC. Can formalise the
meta-theory (proof theory, model theory) of arbitrary
first-order theories, including ZFC itself. Just can’t prove
models of ZFC exist (unless it’s inconsistent).

Answer 2: even if you want model existence, don’t need to
fundamentally change meta-theory. Just need extra
assumptions (e.g. universe existence).

9/19



Overall project map

Object theory: for now, just DTT with function types, one base
type. Aim: extend later.

Meta-theory: CIC, but not using Prop: i.e. DTT with function
types, inductive types, (predicative) universes. (Probably one
universe enough.) Aim: keep fixed!

Five main components:

syntax [done];

corresponding algebraic structures [done];
interpretation function [in progress|;

syntactic category;

AR

initiality.

10 /

19



Design decisions 1

How to formalise syntax?

Nothing fancy! As bricks-and-mortar as possible.
» Raw expressions, with typing judgements afterwards. NOT
inductive-inductive, nominal, HOAS etc.
» Raw expressions as labelled trees, not “parseable strings of
symbols”.

» Named variables/identifiers, not de Bruijn indices.
(Precisely: type V' of variables/identifiers, assumed infinite
and with decidable equality.)

» Full annotation: e.g. app4 p(f,a), not just app(f,a).

Guiding principle: does it fit how we think of syntax when
using it?



Design decisions 2

How to formalise algebraic semantics?

Definition
(Classical.) A category with attributes:
» category C;
» functor Ty : C°P — Set;
» for ' € ob C, A € Ty(I"), object and map 74 : I'"A — T};
» for f: TV =T, Ae Ty(), map q(f,A) : V. A[f] — T.A,
exhibiting 7 4[y) as pullback of 74 along f;
» a distinguished object 1 (optional).



Design decisions 2

We use E-categories with attributes: roughly, CwA’s based on
setoids.

Definition

As a CwA, but
» ob C an arbitrary type;
» all other sets become setoids (e.g. hom-setoids C(I",T));
» maps between setoids respect setoid equalities;

» context extension becomes functor D(Ty(I")) — C/I.

Cons, compared to HoTT (pre-)categories: A bit more work in
some spots, e.g. explicitly stating how dependent operations
respect equality.

Pros: Very foundation-agnostic: interpretable in both HoTT
(with univalence, non-set categories) and classical foundations
(with UIP). Very constructive: no quotients etc.



Streicher’s proof
Streicher: constructs interpretation in two stages.

First: define a partial interpretation on “raw judgements”. (By
induction on raw syntax.)

E.g. for a “raw type judgement” I' F A, give a (possibly-defined)
semantic context and semantic type over it, i.e.

[B1] € Ty(1),

[B] € Ty(1.[B1]),

[B.] € Ty(1.[B1]. - .[Bn-1]),
[] € Ty(L[B1]. - [Ba)-

Second: prove that for derivable judgments, this is defined. (By
induction on derivations.)



Novelty 1

We split into three stages, not just two:
1. A priori, give multi-valued function (neither uniqueness nor
existence of values assumed);
2. then prove uniqueness, giving a partial function;

3. then prove existence, giving a function.

Implementation: define operations M, P so that:
» multi-valued functions A —o B are functions A — M (B);
» partial functions A — B are setoid maps A — P(B).

In fact: M(—) and P(—) form monads, in the functional
programming sense! Very congenial to program with.

5/19



Novelty 2

Instead of interpreting whole raw judgements, we interpret the
principal part of a judgement, given intended interpretations of
the presuppositions.

“I"F A type.” For a raw type expression A, and any semantic
context! T, have a (multi-/partial-) type [A]r € Ty(T)

“I"'F1t¢: A For a raw term expression t, a semantic context I,
and (semantic) type A € Ty(T'), have a (multi-/partial-) section
[[ﬂ]nA of my : T"A—T.

» Allows interpretation to be structurally inductive on single
raw expressions.

» Reduces use of equality of semantic contexts, and resultant
coherence isomorphisms.

tactually not exactly; see next slide
16 /19



Novelty 3

Actually: we throw out semantic contexts entirely!

Interpret syntactic contexts as objects equipped with
environments.

Definition

An environment on I' € ob C: a finite partial map from V to
pairs (A, t), where A € Ty(T'), and ¢ is a section of 74.

So: for raw type A, and I € ob C, E € Env(I'), interpretation is
a (multi- /partial-) [A]r r € Ty(X).
» Further reduces equalities, coherence isomorphisms.
» Simplifies reindexing/substitution lemmas: environments
can be reindexed.
> A “just right” abstraction: carries exactly the information
used in interpreting an expression. (Environment is
consulted just when expression is a variable.)



Local road map

Outline of interpretation construction (mostly but not entirely
done):

1.
2.

Ut

Multi-valued interpretation. (Induction on expressions.)

Stability under reindexing, environment extension, and
equality of semantic arguments. (Induction on expressions;
inextricably mutual.)

Behaviour under substitution into expressions. (Induction
on expressions.)

Uniqueness: partial interpretation. (Induction on
expressions.)

Partial interpretation of (syntactic) contexts, as
objects-with-environments. (Induction on contexts.)

Definedness: full interpretation of well-typed judgements.
(Induction on derivation.)

18 /19



Summary

Payofts

» Well-developed libraries on CwAs and syntax.

» Forkable/extendable proof of interpretation theorem (and
eventually initiality).

» Examples of CwA’s.

» Better understanding towards generalisation.

Current conclusions

> Yeeeees. . . theorem should extend “straightforwardly” (if
laboriously) to “reasonable type theories”.

» But: direct approach probably not feasible for general
statement. Need to go via intermediate abstractions.



	Big picture
	Current project

