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Abstract. Working in homotopy type theory, we provide a systematic
study of homotopy limits of diagrams over graphs, formalized in the
Coq proof assistant. We discuss some of the challenges posed by this
approach to formalizing homotopy-theoretic material. We also compare
our constructions with the more classical approach to homotopy limits
via fibration categories.
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Introduction

Homotopy type theory is based on the discovery that formal depen-
dent type theory has a natural homotopy-theoretic interpretation ([Voe06],
[AW09]). Since a number of interactive proof assistants implement versions
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of dependent type theory, these observations open the possibility of devel-
oping parts of homotopy theory formally with the help of such assistants;
see [PW12] for a helpful overview.

In this spirit, we carry out a number of homotopy-theoretic constructions
in a core system of homotopy type theory. In particular, we define and
investigate (homotopy) pullbacks, equalizers, limits over graphs, pointed
spaces, and fiber sequences. The entire development is formalized with the
Coq interactive proof assistant. Besides the formalization itself, we also
compare the semantics of type theory with fibration categories, a standard
homotopy-theoretic setting for the construction of homotopy limits.

We assume some familiarity with type theory, but not specifically with
the homotopical version; we do not assume any previous acquaintance with
homotopy limits.

We should mention that many of the facts we present below are already
known in folklore; in any case, none of them will be unexpected to researchers
in the field. Egbert Rijke and Bas Spitters [RS13] have also independently
investigated limits and colimits over graphs within a similar type theory.
We hope it will prove useful, however, to have a systematic treatment of
these basic results, fully formalized in Coq and available as a library for
future use. We also hope that the practical lessons we learned during the
formalization process may be useful to others.

Our Coq development builds on a library for homotopy type theory de-
veloped jointly by various people, under the leadership of Andrej Bauer,
Lumsdaine, and Michael Shulman [HoT]. Another extensive library has
been developed by Vladimir Voevodsky [Voe], and some of our verified re-
sults overlap his.

Outline. In Section 1, we set out the the formal framework of our work:
the type theory under consideration, and its intended interpretation. Along
with this, we very briefly review homotopy limits in the classical setting. In
Section 2, we recall some key constructions from the type-theoretic devel-
opment of homotopy theory, and use these to show that every categorical
model of the theory carries the structure of a fibration category. Section 3
presents the main body of our formalization: a concise treatment of the
content, in traditional mathematical prose. Finally, in Section 4 we share
some reflections on practical aspects of the formalization process.

Our formal development in Coq can be found in the files associated with
the journal publication of this paper, and also online at

https://github.com/peterlefanulumsdaine/hott-limits/tree/v1.

The Github version will be maintained for compatibility with Coq and the
HoTT library.

References to the formal code are typeset in a teletype font. For
brevity, we omit the .v extension from filenames, so that, for example,
Fundamentals.v is cited as Fundamentals. Often a single lemma in the

https://github.com/peterlefanulumsdaine/hott-limits/tree/v1
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informal presentation below translates to a cluster of formal lemmas in our
files, in which case we simply cite a representative element of that cluster.
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1. Background

In this section, we first lay out the specific logical system in which we will
work. We then review its intended semantics, insofar as they are relevant
to working within the theory, and fix the basic notation and terminology we
will use, based on the intended semantics. Finally, we very briefly review
classical homotopy limits.

1.1. Logical setting. We assume familiarity with some form of dependent
type theory. Specifically, we will work in the system of predicative Martin-
Löf type theory [ML84]. The following types, and associated rules, form a
minimal core to that system:

(1) dependent products Πx:AB, and the associated introduction, elimi-
nation, and computation rules

(2) dependent sums Σx:AB, and the associated introduction, elimina-
tion, and computation rules

(3) identity types IdA, and the associated introduction, elimination, and
computation rules

Most developments in homotopy type theory add at least the following
rule:

(4) function extensionality: for any type A, any type B depending on
x : A, and functions f, g : Πx:AB, if fx = gx for every x : A, then
f = g.

The system based on these rules is used in [AGS12], where it is denoted
by H; it also forms a sufficient basis for much of the present formalization.
Some of our constructions, in addition, depend on:

(5) the type Nat of natural numbers, with the usual introduction, elim-
ination, and computation rules,
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from which the empty type, unit type, and other finite types can be defined;
and finally, some definitions presuppose the existence of:

(6) a universe U of types, containing Nat, and closed under the formation
of dependent products, sums, and identity types.

We use quantification over the universe to define the universal properties
of pullbacks and limits, but also give equivalent formulations that do not
make use of such a universe.

Besides these, the version of Coq we used implements η-conversion for
functions, λx.fx = f , as a built-in conversion rule. As a propositional
equality, it is derivable from function extensionality, so we do not believe
its use is essential; however, since it is unavoidably present in the proof
assistant, we include it in our formal theory.

In sum, if we take axioms (1)–(3) to represent the core of Martin-Löf type
theory, ML, it is then reasonable to denote our overall framework as

ML + (funext) + (η) + (Nat) + (U).

For brevity, we refer to this in the present paper as H′; thus the formal
content of our work is that the constructions and assertions of Sections 2
and 3 are consequences of this formal theory. As noted above, however,
most of our results do not require Nat, and many do not require U.

We do not consider in the present work extra axioms such as Univalence,
resizing, or higher inductive types.

One final comment about the formal verification: rather than providing
Id, Nat, Bool, and so on individually, Coq provides a general mechanism
for defining inductive types, which these are then defined as instances of.
However, the resulting eliminators for these types correspond precisely to the
rules for them described above. Coq also provides (dependent) record types,
as syntactic sugar for certain inductive types; in some cases, using record
types made type checking more efficient, and brought notational benefits as
well. As these may be routinely translated into (iterated) Σ-types, their use
has no bearing on the question of derivability in H′.

1.2. Semantics.

1.2.1. General algebraic semantics. The fully general semantics of depen-
dent type theories are, from a purely algebraic point of view, well-understood.
Essentially, a model of any dependent type theory T with the same basic
judgements and structural rules as H′ may be defined as a contextual cat-
egory—that is, a category equipped with structure sufficient to model the
structural rules—along with further algebraic structure corresponding to the
logical constructors and axioms of T. For the details of this definition, see
[Str91]; for brevity, we will refer to such a structure as a categorical model
of T.

The justification for calling such structures models comes from the fact
that the syntax of the theory forms an initial such structure:
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Definition 1.2.1. Given any dependent type theory T, the syntactic cate-
gory C(T) is given as follows:

• objects of C(T) are contexts [x1:A1, . . . , xn:An] of T, up to defini-
tional equality and renaming of free variables;
• maps of C(T) are context morphisms (a.k.a. substitutions), again up

to definitional equality and renaming of free variables. That is, a
map

f : [x1:A1, . . . , xn:An] // [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)]

is represented by a sequence of terms

x1:A1, . . . , xn:An ` f1 : B1

...

x1:A1, . . . , xn:An ` fm : Bm(f1, . . . , fm−1).

Moreover, C(T) may naturally be given the structure of a contextual
category; for each logical rule of T, C(T) carries the corresponding algebraic
structure.

Fact 1.2.2 ([Str91]1). C(T) is initial among categorical models of T.

Thus any other categorical model C has a canonical structure-preserving
functor from C(T)—that is, an interpretation function, interpreting the syn-
tax of T in C.

1.2.2. Homotopical semantics. Homotopy type theory is based on the real-
ization ([HS98], [AW09], [vdBG12], [Voe10]) that various homotopy-theoretic
settings give natural examples of such categorical models. Very roughly, a
type A denotes a space; a family B(x) of types, depending on some variable
x of type A, denotes a fibration over A; a term t(x) of type A′, again depen-
dent on a variable x : A, denotes a continuous map from A to A′; a term t(x)
of type B(x), dependent on x : A, denotes a section of the corresponding
fibration over A; and so on.

The main motivating interpretation, for us, is the model in simplicial
sets—one of the most well-studied models of spaces in homotopy theory.
The full details of this interpretation are rather technical, so since we never
require them, we omit them here; see [KLV12] for a complete presentation
of the simplicial set model, and [Shu14] for more general related models. We
sketch here just the main ingredients of the interpretation, insofar as they
justify the intuition and terminology for working within the theory.

In this model, closed types (and, more generally, contexts) are interpreted
as Kan complexes; dependent types, as Kan fibrations. Most type formers—
Π-types, Σ-types, Nat, etc.—are interpreted as in the more familiar topos

1Unfortunately, to our knowledge, no general form of this result exists in the literature;
it is shown for certain specific type theories in [Str91] and elsewhere, and its extension to
other combinations of the standard rules (such as H′) is well-known in folklore.
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logic: Π-types by the right adjoint to pullback, Σ-types by the left, Nat by
the natural numbers object, and so on.

The main novelty, however, is the interpretation of the identity type
IdA(x, y) with variables x and y from A. In set- and topos-theoretic models,
one would interpret it as the diagonal map A //A×A. However, in simpli-
cial sets (and other homotopy-theoretic settings) this map is hardly ever a
fibration. It can, however, be replaced by a fibration P (A) //A×A, where
P (A) is the path object of A; this is then used to interpret the identity type
of A. Thinking of a simplicial set as a space, P (A) represents the space of
paths in A, with the fibration P (A) //A×A giving the indexing of paths
over their endpoints. In particular contrast to the set-theoretic situation,
for given x, y : A the space P (A)(x, y) of paths from x to y may be not a
mere proposition, but a non-trivial space in its own right.

1.3. Notation and terminology. Our choices of notation and terminology
are guided by the homotopical interpretation. In particular, we will write
p : (x y) for the identity type, to emphasize that we consider it as the
type of paths from x to y. The Homotopy Type Theory library uses the
notation x = y for this type, and in our Coq development, we stick with
this. However, in the informal presentation below, we find it most natural to
understand our constructions as constructions of paths, rather than equality
proofs; and so we settle on the latter notation, and favor the word “path”
over “equality.”

In other respects, however, we have found it more convenient to leave
the homotopy-theoretic interpretation implicit. For example, the natural
definitions of pullbacks, equalizers, and limits in type-theoretic notation turn
out to characterize homotopy pullbacks, homotopy equalizers, and homotopy
limits in the homotopy-theoretic interpretation. Having kept the notion of
“path” prominent, sprinkling the word “homotopy” everywhere seemed to
impose an unnecessary burden; thus, both in code and in prose we refer
just to “pullbacks,” “equalizers,” and “limits.” (This is customary in higher
category theory (see, e.g., [Lur09]), when one uses, for example, the word
“limit” for an object that in strict terms is only a homotopy limit.)

For the sake of readability, we will use standard mathematical terminology
and notation in Sections 2 and 3, rather than attempting to adhere closely
to the notation used in the Coq code. Table 1 lists some of the basic notions
of our development, comparing the notations used in our presentation here
with those used in the Coq formalization.

As usual in homotopy type theory, we represent logic using propositions-
as-types, with implication, conjunction, and universal and existential quan-
tification interpreted in terms of function, product, Π-, and Σ-types respec-
tively. Thus, for example, the functional extensionality axiom (Axiom 4 in
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informal mathematical Coq
notion notation notation

p is a path from x to y p : (x y) p : x = y

identity path at x refl(x) idpath x

concatenation of p and q p � q p @ q

inverse of p p !p

B is a fibration over A B � A B : A -> Type

total space of B over A Σx:AB(x) { x : A & B x }

dependent product of B over A Πx:AB(x) forall x : A, B x

e is an equivalence from A to B e : A ' B e : A <~> B

inverse of e e−1 e^-1

a universe of small types U UU

the natural numbers Nat nat

Table 1. Correspondence of notations

Section 1.1 above), is formally a constant of type:

funext :
∏

A:Type
B:A→Type

∏
f,g:

∏
x:A

B(x)

(
∏
x:A

(fx gx))→ (f  g).

Notice that Σ-types provide a useful way of “packaging” related pieces of
data into a single type: to illustrate this, consider Definition 3.1.5 below.
Formally, a cospan consists of types A, B, and C, and maps f : A // C,
g : B //C. Given a type X, a cone over this cospan with vertex X consists
of maps h : X //A and k : B //C, and a family of paths (f(hx) g(kx))
for each x in X. In other words, such a cone is an element of the type∑

h:X→A
k:X→B

∏
x:X

(f(hx) g(kx)).

Thus our formal definition in Coq reads as follows:

Definition cospan_cone {A B C : Type} (f : A -> C)

(g : B -> C) (X : Type)

:= { h : (X -> A) & { k : (X -> B)

& forall x, paths (f(h x)) (g(k x)) }}.

The curly braces around the arguments A, B, and C indicate that these are
treated as implicit arguments. This means that the user may write just
cospan_cone f g X, leaving the system to infer A, B, and C from the types
of f and g. Sometimes one needs to turn this feature off, and specify such
arguments; writing @cospan_cone A B C f g X tells Coq to expect all the
arguments of cospan_cone to be given explicitly.
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1.4. Classical homotopy limits. For the reader unfamiliar with the clas-
sical theory of homotopy limits, we briefly survey here a few of its key points.

They may be seen as a solution to the problem that ordinary (“strict”)
limits are not invariant under homotopy equivalence: for instance, the two
cospans below are homotopy equivalent, but their strict pullbacks are not.

∗ ∗

∗∗

∗ [0, 1]

∗∅

0

1

This may be resolved by instead defining the homotopy pullback A×hB C, as
the space of triples (a, c, p), where a ∈ A, c ∈ C, and p is a path in B from
f(a) to g(c); the equalities in the definition of the strict pullback have been
replaced by paths.

More generally, the homotopy limit of a functor F : I // Top may be
defined using the end formula

∫
i∈I F (i)B(I/i). This has the effect of replacing

equalities by homotopies, in a coherent fashion; the coherence is encoded by
the use of the classifying spaces B(I/i). This generalizes to other settings,
first by a similar concrete construction (in e.g. simplicial settings [BK72]),
and more abstractly in terms of derived functors (for general homotopical
categories [DHKS04]).

In the∞-categorical setting, one may take an alternative approach, defin-
ing the (homotopy) limit by an ∞-categorical universal property directly
generalizing that of ordinary 1-categorical limits (see e.g. [Lur09]). In Ho-
motopy Type Theory, we do the same. It turns out, in fact, that at least
for diagrams over graphs, what looks like the ordinary definition of a strict
set-theoretic limit actually defines the homotopy limit—both as an explicit
construction, and as a characterization via a universal mapping property.

2. Fibration categories from type theory

In this section and the next, we develop the basic theory of homotopy lim-
its and related notions in H′. We have already explained, in Section 1, how
the basic ingredients are represented in the language of Coq, and complete
details of the whole development can be found in the files comprising our
formal verification. Especially in Section 3, therefore, we will generally only
sketch most proofs, leaving out steps that are straightforward and routine
(and even some that are not).

2.1. Basic constructions. Our formal work builds on the HoTT library
[HoT] for homotopy theory developed by Bauer, Lumsdaine, Shulman, and
others. We begin by summarizing some of the basic components of this
library that are used throughout.
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2.1.1. Operations on paths. Given any x, y : X, we write p : (x y) to
denote that p is a path from x to y. For every x, there is an “identity path”
refl(x) : (x x). The central property characterizing the type of paths is
its elimination principle, which says roughly that to construct an object of a
type C(x, y, p) depending on a path p from x to y, it suffices to construct an
element of C(x, x, refl(x)), in which p has been “contracted” to an identity
path.

Paths admit various operations familiar from homotopy theory and higher
category theory. Any two paths p : (x y) and q : (y  z) can be concate-
nated, yielding a path p � q : (x z). Moreover, refl(x) : (x x) is a unit
element for this operation, and every path admits an inverse p̄ : (y  x).
These operations satisfy the groupoid laws, but, as in homotopy theory, only
up to a higher path. For example, we can find an inhabitant of the type
(p � p̄ refl(x)). In fact, every type, together with the tower of its paths,
forms an ∞-groupoid of some sort; precise statements along these lines can
be found in [vdBG11], [Lum09].

Moreover, the maps between types respect the paths and the structure on
them. That is: given any p : (x y) in X and f : X //Y , we obtain a path
f [p] : (f(x) f(y)); and this is functorial, in the up-to-homotopy sense that
there is, for example, an inhabitant of the type (f [p � q] f [p] � f [q]).

2.1.2. Equivalences and truncatedness. The notion of paths allows us to re-
cover several familiar notions from algebraic topology.

We can, for example, say that a type X is contractible if there is some
x0 : X, and a function giving for each x : X a path (x x0). Formally, the
proposition “X is contractible” is defined as follows:2

isContr(X) :=
∑
x0:X

∏
x:X

(x x0).

One can also construct the homotopy fiber of a map f : X // Y over an
element y : Y by:

hfib(f, y) :=
∑
x:X

(f(x) y).

Given these we say that a map f : X //Y is an equivalence if for all y : Y
the homotopy fiber of f over y is contractible. The HoTT library provides
many crucial results on equivalences. For example, a map is an equivalence
exactly if it has a two-sided inverse (up to homotopy), or alternatively two
one-sided inverses.

2One might at first read this as a definition of connectedness—for each x, there exists
some path from x to x0—but remember that one should think of the function sending x to
the path as continuous, so as giving a contraction of X to x0. Precisely, in the simplicial
and similar interpretations, the Π-type becomes a space of continuous functions, and so
isContr gets interpreted as the property of contractibility; and moreover, working within
the theory, the logic forces isContr to behave like contractibility, not like connectedness.
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Another notion that smoothly transfers from algebraic topology to HoTT
is the notion of an n-type. Classically, an n-type is a space whose homo-
topy groups vanish above dimension n. In HoTT we define an analogous
hierarchy.

Precisely, n-truncatedness is defined by induction for n ≥ −2. A type
X is (−2)-truncated if it is contractible; and is n + 1-truncated if for all
x, y : X, the type (x y) of paths from x to y is of n-truncated. For
short, we refer to n-truncated types as n-types. In particular, (−1)-types
may be considered as propositions, carrying no more information than the
fact of being inhabited; and 0-types as (up-to-homotopy) discrete sets. We
call such types propositions (or mere propositions, for emphasis) and sets
respectively.

2.1.3. Functional extensionality. Given two typesX and Y , the typeX → Y
of maps between them can be equipped with the notion of a path (or rather,
a “homotopy”) in two different ways. First, for any f, g : X // Y , one can
form (f  g), in the usual way. On the hand, one can also compare two
functions pointwise, asking for an element of

∏
x:X (f(x) g(x)); we call

such a function h a homotopy from f to g, and write h : f ⇒ g.
Given any p : (f  g), we obtain by the elimination principle for paths an

element of the type f ⇒ g. The functional extensionality axiom implies that
this assignment is an equivalence; that is, that given a pointwise homotopy
between two maps, we can always find a path between them in the function
type inducing the original homotopy. More generally, functional extension-
ality implies this equivalence between paths and homotopies in dependent
function types

∏
x:AB(x).

2.1.4. Dependent sums. The interaction between dependent sums and paths
is crucial in our work. LetB(x) be a type depending on x : A. It is easy to see
that then a path p : (a a′) in A induces an equivalence p! : B(a) //B(a′),
which we call transport between fibers. As everything before, this commutes
appropriately with the operations on paths; for example, for any p : (a a′)
and q : (a′  a′′), and b : B(a) we have ((p � q)!b q!(p!b)).

This also provides a means to construct paths between two elements of a
Σ-type. Given a path p : ((a, b) (a′, b′)) in a

∑
x:AB(x), we get a pair of

paths: p1 : (a a′) and p2 : ((p1)!b b′); and conversely, given such a pair
of paths, we can recover the original path p. This construction is ubiquitous
in the formalization, since so many objects are defined using Σ-types; for
more discussion, see Section 4.3 below.

2.2. Fibration category structure. In this section, we show that any
categorical model of H′ (so, in particular, its syntactic category) satisfies
the axioms of a fibration category, following the lines of results such as
[GG08], [Lum11]. After this, we look at how some standard properties of
fibration categories translate in terms of the type theory.
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The results follow from a combination of internal reasoning—proving cer-
tain statements in the type theory—and external (meta-theoretic), showing
how in models, the internal statements translate into the desired axioms.
Since we will be switching back and forth frequently between these two dif-
ferent logical settings, we use sans serif text in this section to distinguish the
internal reasoning from the external. The internal portions are formalized in
the file Fundamentals.

We start by recalling the definition of a fibration category (for more on
which, see [Bro73], [Bau89]):

Definition 2.2.1. A fibration category is a category C together with two
distinguished classes of maps, W (the weak equivalences) and F (the fibra-
tions) satisfying the following conditions:

(1) Weak equivalences satisfy the 2-out-of-6 condition; i.e., given a com-
posable triple of morphisms

W
f // X

g // Y
h // Z,

if g ·f and h ·g are weak equivalences, then so are f , g, h, and h ·g ·f .
(2) F is closed under composition.
(3) Calling a map that is both a weak equivalence and a fibration an

acyclic fibration, all isomorphisms are acyclic fibrations.
(4) C has a terminal object 1.
(5) Pullbacks along fibrations exist; fibrations and acyclic fibrations are

stable under pullback.
(6) For any object X ∈ C, the diagonal morphism ∆: X //X ×X can

be factored as a weak equivalence followed by a fibration:

X // PX //X ×X.
(Such a factorization, and by abuse of language also the object PX,
is called a path object for X.)

(7) Every object is fibrant ; that is, the unique map X //1 is a fibration,
for any X ∈ C.

Remark 2.2.2. This is slightly stronger than the original definition given
by Brown, in that it requires the class W to satisfy the 2-out-of-6 axiom
rather than just the more familiar 2-out-of-3. However, once C satisfies all
the other axioms, the following conditions are equivalent (the result is due
to Cisinski; see [RB06, Thm. 7.2.7]):

(1) W satisfies 2-out-of-6;
(2) W satisfies 2-out-of-3 and is saturated; that is, if a map w of C

becomes an isomorphism in Ho(C), then w ∈ W.

In this section we show that any categorical model of H′ (in the sense of
Section 1.2) carries the structure of a fibration category; and so, in partic-
ular, the syntactic category C(H′) does. From here on, fix some categorical
model C of H′.
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For convenience of exposition, we also assume in this section strong η-rules
for Σ-types, so that every context is isomorphic to (a context consisting of
just) a single iterated Σ-type: for instance,

[x:A, y:B(x)] ∼= [p :
∑
x:A

B(x)].

This allows us to work just with types, rather than with general contexts.
However, nothing here depends on that assumption; one may simply replace
types with contexts and Σ-types with context extensions, in particular in
the definition of the fibrations:

Definition 2.2.3 (Gambino–Garner [GG08]). A map of C is a fibration if
it is isomorphic to some composite of first projections from Σ-types,∑

x:A

B(x)→ A.

Denote the class of fibrations by F .

(This is a slight simplification of Gambino and Garner’s original definition,
which also closes F under retracts.) Note that “isomorphic” here refers
to the external notion of isomorphism in C, involving definitional equality
of maps; and so one cannot represent this definition internally in the type
theory, since definitional equality is not represented by a type. Indeed, there
is no way of defining these fibrations internally: every statement of the type
theory respects equivalence, and we see in Lemma 2.2.11 below that every
map is equivalent to a fibration.

Weak equivalences, by contrast, are defined first internally, as in Sec-
tion 2.1 above:

Definition 2.2.4 (Voevodsky). A map f : A // B is an equivalence if for
each b : B the homotopy fiber hfib(f, b) is contractible.

(Note that this is simply a property of f , not extra structure, since being an
equivalence is a proposition in the sense of Section 2.1.2.)

Take a map f : A //B in C to be in W if “(λx. f(x)) is an equivalence”
holds in C.

With these definitions, we are now ready for the main theorem of the
section:

Theorem 2.2.5. C, with W and F as described above, is a fibration cate-
gory.

We consider the various axioms in turn.

Lemma 2.2.6. W satisfies the 2-out-of-6 property.

Proof. We first show the analogous statement internally (Lemmas two_of_six_hgf,
two_of_six_h, two_of_six_g, and two_of_six_f in the formalization).

Let f , g, h be composable maps, and suppose f ·g and g ·h are equivalences.
Then:
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• (g · f)−1 · g · (h · g)−1 gives a quasi-inverse for h · g · f ;
• (h · g)−1 · h and f · (g · f)−1 give left and right inverses for g;
• (g · f)−1 · g gives a quasi-inverse for f ;
• g · (h · g)−1 gives a quasi-inverse for h.

This immediately implies the desired external statement, since internal
and external composition agree. �

Lemma 2.2.7. Pullbacks of fibrations exist.

Proof. The pullback of a dependent projection is given by substituting into
the corresponding dependent type; that is, the following square is a pullback:∑

x:A′
B(fx) //

��

∑
x:A

B(x)

��
A′

f // A.

The two pullbacks lemma implies that pullbacks of their composites then
also exist. �

Note that this is an external statement: these really are strict pullbacks,
in contrast to the internally defined pullbacks of Section 3.1, which from an
external point of view become homotopy pullbacks.

Lemma 2.2.8 (fiber_to_hfiber_equiv). Let π1 :
∑

x:AB(x) // A be a
fibration. Then for any a : A, we have B(a) ' hfib(π1, a).

Proof. Take any a : A. For the map B(a) // hfib(π1, a), send b : B(a) to
((a, b), refl(a)). Conversely, send ((a′, b), p) : hfib(π1, a) (where b : B(a′) and
p : (a′  a)) to the transported element p!(b) : B(a). The verification that
these are mutually inverse is straightforward. �

Lemma 2.2.9. Fibrations and acyclic fibrations are preserved under pull-
back.

Proof. Preservation of fibrations is clear by construction from the proof of
Lemma 2.2.7. For acyclicity, suppose π = π1 :

∑
x:AB(x) //A is an acyclic

fibration, and f : A′ // A is a map. Write f∗π for the pullback fibration
π1 :

∑
x:A′ B(f(x)) //A′. Then for any x : A′,

hfib(f∗π, x) ' B(f(x)) ' hfib(π, f(x))

by Lemma 2.2.8; and hfib(π, f(x)) is contractible by hypothesis, so since equiv-
alence preserves contractibility, hfib(f∗π, x) is again contractible. So f∗π is
again acyclic, as required. �

Lemma str_pullback_pres_acyclic_fib provides the internal part of
this argument.
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Definition 2.2.10. The path type of a type A ∈ C is constructed from its
identity types:

PA :=
∑
x,y:A

(x y)

It is equipped by construction with a fibration π to A×A, and there is also
a natural map r : A // PA sending a to ((a, a), r(a)). Moreover, the map
PA // A sending ((a, a′), p) to a (or to a′) gives a quasi-inverse for r; so
together, we have a factorization of the diagonal of A as a weak equivalence
followed by a fibration:

PA
π

##
A

∆
//

r

>>

A×A

We have now amassed all the ingredients of a fibration category:

Proof of Theorem 2.2.5. Immediate from the preceding lemmas. �

Besides the basic structure, we consider how a few more useful construc-
tions from the theory of fibration categories play out in C:

Lemma 2.2.11 (Factorization Lemma, [GG08, Lem. 11]). For every mor-
phism f : A //B in C, there exists a factorization:

Pf
pf

  
A

f
//

σf
>>

B

with σf ∈ W and pf ∈ F .

Proof. We take

Pf :=
∑

y:B,x:A

(fx y).

and

σf (x) := (fx, x, refl(fx)).

By definition, pf is in F ; and it is easy to check that σf ∈ W. �

(W,F) factorizations may be constructed in this way in any fibration
category. In the type-theoretic case, however, they crucially satisfy an ad-
ditional property, corresponding to the Id-elimination rule: σf is weakly
left-orthogonal to fibrations, and so fibrations form the right class of a weak
factorization system. We will not however go into this point here; see [GG08]
for details.
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Lemma 2.2.12 (right_properness). The pullback of a weak equivalence
along a fibration is again a weak equivalence:

π∗C
π∗f //

��

∑
x:AB(x)

π

��
A′

f∈W
// A

Proof. The map π∗f sends a pair (y, b) to (f(y), b); so taking a quasi-inverse
(g, η, ε) for f , we can construct a quasi-inverse for π∗f by sending (x, b) to

(g(x), η(x)!b). �

(Again, this lemma holds in any fibration category.)
One may also define cofibrancy, for objects of any fibration category:

Definition 2.2.13. An object C of a fibration category C is cofibrant if for
any acyclic fibration p : B // A and map f : C // A, there is some lifting
f̄ : C //B:

B

p

��
C

f̄
77

f // A.

When C is a categorical model of H′ , we have:

Lemma 2.2.14. Every object of C is cofibrant.

Proof. Lemma 2.2.8 implies that every acyclic fibration π1 :
∑

x:AB(x) //A
admits some section: take some family of contractions of the fibers hfib(π1, x),
and send x : A to the image of the center of contraction ∗x : hfib(π1, x) under
the equivalence hfib(π1, x) ' B(x). Now, given f as above, take f̄ to be the
composite of f with this section. �

We conclude with a somewhat subtler question. Another condition often
assumed for fibration categories is that for any N-indexed sequence

A0 A1
f0oo A2

f1oo · · · ,
f2oo

if each fi is a fibration then the sequence has a limit, and moreover the
projections from this limit are again fibrations.

This turns out not to be provable in the type theory—in particular, it fails
in the syntactic category C(H′). However, appropriate internally-formulated
versions of it do hold; this is analogous to the fact that an elementary topos
may fail to be externally complete, while possessing all limits in the internal
sense.

To see how it fails in C(H′), consider the sequence of projections

1 Nat
f0oo Nat2f1oo · · ·

f2oo
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This sequence cannot have a limit, since such a limit would be a N-fold
product of copies of Nat, and as such would necessarily have uncountably
many global elements, while C(H′) is countable.

However, an internal limit for the sequence exists, in the form of the
object NatNat (working internally, it does not make sense to ask whether the
projections are fibrations); and, in some models (e.g. the simplicial model)
this object turns out to be interpreted as the external limit

∏
N Nat.

3. Limits and applications

3.1. Pullbacks and equalizers. Before defining general limits over graphs,
we start by investigating pullbacks; these serve both as a warmup and as a
useful tool for subsequent material.

3.1.1. The standard construction of a pullback. We start by explicitly con-
structing the pullback of a cospan. The definitions and theorems in this
section are found in Pullbacks.

Definition 3.1.1 (pullback). Let A
f // C B

goo be a cospan of types
and functions. The (standard) pullback Pb(f, g) of this cospan is defined as:

Pb(f, g) :=
∑

x:A, y:B

(fx gy)

with the obvious maps:

Pb(f, g)
πB //

πA
��

B

g

��
A

f
// C

.

(This definition may be recast to parallel a traditional construction of the
homotopy pullback in fibration categories [Bro73, Lem 1.3]: first fibrantly
replace f by pf as in Lemma 2.2.11, obtaining

Pf =
∑

c:C hfib(f, c) =
∑

c:C,a:A (fa c)

pf

��
A

f
// C,

and then secondly, take the strict pullback of Pf along g as a fibration
over C, obtaining

∑
b:B hfib(f, g(c)) =

∑
b:B,a:A (fa gb), which is (strictly,

externally) isomorphic to Pb(f, g) as defined above.)
Note that the pullback is symmetric (pullback_symm): there is an equiv-

alence Pb(f, g) ' Pb(g, f) commuting appropriately with the projections
and canonical homotopies.

Moreover, the construction of the pullback should be functorial in (f, g).
This requires a few extra definitions to state:
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Definition 3.1.2 (cospan_map). Given two cospans A
f // C B

goo

and A′
f ′ // C ′ B′

g′oo , a cospan map h from (f, g) to (f ′, g′) consists
of maps hA, hB, hC and homotopies hf , hg:

A

B

C

A′

B′

C ′

f

g

f ′

g′

hA

hB

hChf

hg

There is an identity map from any cospan to itself (cospan_idmap); also,
there is an evident composition of cospan maps (cospan_comp).

Proposition 3.1.3 (pullback_fmap). A map of cospans h : (f, g) //(f ′, g′)
induces a map of pullbacks Pb(f, g) // Pb(f ′, g′). Moreover, this preserves
composition and identities.

The most frequent application of this functoriality, in practice, is the in-
variance of pullbacks under equivalences — that, for instance, given a cospan

A
f // C B

goo and an equivalence e : A′ ' A, there is an equivalence
between the pullbacks Pb(f, g) and Pb(f ·e, g). This, and various other sim-
ilar statements, are all easily obtained from the functoriality of Pb together
with the lemma:

Lemma 3.1.4 (cospan_equiv_inverse). Suppose h = (hA, hB, hC , hf , hg)
is a cospan map from (f, g) to (f ′, g′), and hA, hB, hC are equivalences.
Then there is a cospan map h−1 : (f ′, g′) // (f, g), inverse to h in that there
are paths (h · h−1  1) and (h−1 · h 1).

An interesting technical point arises here: rather than proving this and
other facts about cospan maps directly, we deduce them from the analogous
facts about commutative squares (considered as maps between functions).
These are developed in the file CommutativeSquares. Most immediately,
this arrangement slightly simplifies the proofs in the present section, since
one does not have to write each construction out separately for the left and
right legs of the cospan. It also allows us to directly re-use the commutative
squares material in Section 3.2, as the building blocks of the analogous facts
about diagrams over general graphs.

3.1.2. The universal property of pullbacks. Above, we defined pullbacks by a
specific construction. Alternatively, one can characterize them by a universal

property. For the next few definitions, fix some cospan A
f // C B

goo .
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Definition 3.1.5 (cospan_cone). Let X be any type. A cone µ over (f, g)
with vertex X consists of functions µA, µB, and a homotopy µC : f · µA ⇒
g · µB:

X

A

B

C

µA

µB

f
g

µC

Write Cone(X; f, g) for the type of cones over (f, g) with vertex X.

Cone(X; f, g) should be contravariantly functorial in X. We do not show
this in full; but in particular, a map f : X ′ //X induces a map

Cone(X; f, g) // Cone(X ′; f, g),

given by precomposing the components of the cone with f . For a cone µ,
we denote this as µ ◦ f . Fixing a cone µ : Cone(X; f, g) thus induces for any
type X ′ a map

(µ ◦ −) : (X ′ → X) // Cone(X ′; f, g).

This allows us to define the universal property of pullbacks:

Definition 3.1.6 (is_pullback_cone). A cone µ over (f, g), with vertex
P , is an (abstract) pullback for (f, g) if for every small type X : U, the map
(µ ◦ −) gives an equivalence (X → P ) ' Cone(X; f, g).

One can of course ask whether (µ ◦ −) is an equivalence for an arbitrary
type X, not necessarily small; but to quantify over types, one must restrict
to some universe. Even doing so, the resulting property of “being a pullback”
is (a priori) as large as the universe used. It is, however, a mere proposition,
since being an equivalence is one.

(For an investigation of left universal properties of inductive types, defined
along similar lines, see [AGS12].)

Proposition 3.1.7 (pullback_universal). The evident cone from the stan-
dard pullback Pb(f, g) (3.1.1) to (f, g) is an abstract pullback.

Proof. By direct construction: any cone from some X to (f, g) induces a
map X // Pb(f, g), and by functional extensionality, this construction is
inverse to composition with the standard cone. �

Proposition 3.1.8 (abstract_pullback_unique). If µ : Cone(X; f, g) and
ν : Cone(Y ; f, g) are both pullbacks for (f, g), then the unique map f : Y //X
such that (µ ◦ f  ν) (provided by the universal property of µ) is an equiv-
alence.

Conversely, if µ : Cone(X; f, g) is any cone, and f : X ' Y an equiva-
lence, then setting ν := µ ◦ f , µ is a pullback if and only if ν is.
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Proof. The following diagram commutes, and the maps X // (1 → X),
Y // (1→ X) are equivalences:

X (1→ X)

Y (1→ Y )

Cone(1; f, g)f

(µ ◦ −)

(ν ◦ −)

It follows by 2-out-of-3 that if any two of f , (µ◦−), (ν ◦−) are equivalences,
so is the third. �

Corollary 3.1.9 (is_pullback_cone’). A cone µ : Cone(X; f, g) is a pull-
back cone if and only if the induced map X // Pb(f, g) is an equivalence.

Since any two interderivable propositions are necessarily equivalent, this
property could be used as an alternative definition of µ being a pullback
cone, with the advantage (compared to our previous definition) of yielding
again a small type, since it does not quantify over the universe.

3.1.3. Two pullbacks lemmas. We have introduced pullbacks in two different
ways: via a concrete construction, and via a universal property. For each of
these, one can give a version of the classical two pullbacks lemma.

Proposition 3.1.10 (two_pullbacks_equiv). For all f, g, h as in the di-
agram below, the induced comparison map Pb(g∗f, h) // Pb(f, g · h) is an
equivalence:

Pb(f, g · h)

((

'' ((
Pb(g∗f, h)

��

// Pb(f, g)

g∗f
��

// A

f

��
B2

h // B1
g // C

Proposition 3.1.11 (abstract_two_pullbacks_lemma, in Pullbacks3).
Suppose that in a rectangle

P2

��

// P1

k
��

// A

f
��

B2
h // B1

g // C

the right square is a pullback. Then the left square is a pullback if and only
if the outer rectangle is a pullback.

Proof. Write µ for the cone from P1 to (f, g), µ′ for the cone from P2 to
(g∗f, h), and µ′′ for the cone from P2 to (f, g · h). Then for any X, the
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following triangle commutes:

(X → P2)

Cone(X; g∗f, h)

Cone(X; f, g · h)

(µ′ · −)

(µ′′ ◦ −)

Here the vertical map denotes the composition of a cone on (g∗f, h) with µ;
and this can be shown (by direct construction) to be an equivalence. Hence
by 2-out-of-3, (µ′ ◦ −) is an equivalence if and only if (µ′′ ◦ −) is. �

It should be noted that the arguments involved in showing the equivalence
Cone(X; g∗f, h) ' Cone(X; f, g ·h) are necessarily more involved than in the
1-categorical setting, since they depend on comparing paths in types; in
terms of the classical theory, this is more analogous to the corresponding
lemma for quasi-pullbacks in a bicategory.

3.1.4. Equalizers. The formal definitions and theorems corresponding to the
remainder of Section 3.1 are found in the file Pullbacks2, except for the
next definition, which appears in Equalizers.

Definition 3.1.12 (equalizer). Let f, g : A //B. The equalizer of f and
g is defined as the type:

Eq(f, g) :=
∑
x:A

(fx gx).

together with the projection π : Eq(f, g) //A.

As in classical category theory, pullbacks and equalizers can be defined in
terms of each other.

Proposition 3.1.13 (eq_as_pb_equiv). The equalizer of any parallel pair
f, g : A //B is equivalent to the pullback of the paired map 〈f, g〉 : A //B×B
and the diagonal ∆B:

Eq(f, g) ' Pb(∆B, 〈f, g〉) //

��

A

〈f,g〉
��

B
∆B

// B ×B

Conversely, the pullback of any cospan A
f // C B

goo is equivalent
to the equalizer of the pair

f · π1, g · π2 : A×B // C.
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3.1.5. Homotopy fibers and loop spaces. We next consider a couple of ex-
amples which bring out the homotopical character of the theory—examples
which in classical 1-category theory, and in the type theory with UIP3, would
be trivial, but which in the un-truncated type theory become non-trivial,
corresponding to the classical theory of homotopy pullbacks.

We first need one piece of notation. Given a type B and an element b : B,
write pbq : 1 //B for the map sending the unique element ∗ : 1 to b.

Example 3.1.14 (hfiber_to_pullback_equiv). Given a map f : A //B
and an element b : B, the homotopy fiber of f over b may equivalently be
given as a pullback:

hfib(f, b) ' Pb(pbq, f) //

��

A

f
��

1
pbq

// B

Example 3.1.15 (Omega_to_pullback_equiv). Given a type B and an
element b : B, the space of loops in B based at b, Ω(B, b) := (b B b) may
be given as a pullback:

Ω(B, b) ' Pb(pbq, pbq) //

��

1

pbq
��

1
pbq

// B.

This last example in particular exemplifies the fact that our pullbacks
correspond, in the classical setting, to homotopy pullbacks.

3.1.6. Properties of pullbacks. Various nice properties of maps are preserved
under pullback. In proving such preservation properties, the following lemma
is rather useful:

Proposition 3.1.16 (hfiber_of_pullback). Given A
f // C B

goo ,
the homotopy fiber of the map f∗g over a point a : A is equivalent to the
homotopy fiber of g over f(a).

Proof. Immediate from Example 3.1.14 together with the concrete two pull-
backs lemma, Proposition 3.1.10. �

Corollary 3.1.17 (pullback_preserves_equiv). Equivalences are stable
under pullback. That is, if g : B // C is an equivalence, then for any
f : A //B, the pullback f∗g : A×B C //A is again an equivalence.

Proof. Each fiber of f∗g is equivalent to some fiber of g, so is contractible.
�

3“Uniqueness of Identity Proofs”: the axiom that every identity type (x X y) is a
mere proposition [Str91], [War08].
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More generally, any property of maps defined or characterized fiberwise,
using an equivalence-invariant property of types, is itself stable under pull-
back (pullback_preserves_fiberwise_properties).

3.2. Limits. Generalizing the constructions above of pullbacks and equaliz-
ers, we move to limits for diagrams over arbitrary graphs. Unless otherwise
noted, the formal definitions and theorems that follow are found in Limits.

3.2.1. Graphs and diagrams.

Definition 3.2.1 (graph). A graph G consists of:

• a type G0 (the vertices or objects of G); and
• for each i, j : G0, a type G1(i, j) (the edges or arrows from i to j).4

Definition 3.2.2 (diagram). A diagram D on a graph G consists of:

• for each vertex i : G0, a type D0(i);
• for each arrow g : G1(i, j) of G, a map D1(g) : D(i) //D(j).

For both graphs and diagrams, we will often suppress the subscripts when
they are clear from context.

Example 3.2.3 (cospan_graph, in Limits2). To recover cospans as an
example of these diagrams, one can define a graph by taking G0 to be the
type with three elements, {l,m, r} and let G1 be given by:

• G(l,m) := 1,
• G(r,m) := 1,
• G(i, j) := ∅ otherwise.

A diagram D over this graph corresponds precisely to a cospan:

D(r)

��
D(l) // D(m)

3.2.2. The universal property of limits.

Definition 3.2.4 (graph_cone). Given a diagram D on a graph G, a cone
µ on D with vertex X consists of:

• for each i : G0, a map µ0
i : X //D0(i);

• for each arrow g : G1(i, j), a homotopy µ1
g : D1(g) · µ0

i ⇒ µ0
j .

Write Cone(X;D) for the type of cones on D with vertex X.

Again, we usually suppress the subscripts, writing just µi, µf .
As with cones over cospans, Cone(X;D) is functorial in X: a function

f : X ′ // X and a cone µ : Cone(X;D) may be composed to give a cone
µ ◦ f : Cone(X;D). This lets us generalize the definition of the universal
property:

4Note that we do not assume truncatedness for any of the types involved; we do not need
to, essentially since the definiton doesn’t posit any paths within them. Cf. Section 3.2.4.
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Definition 3.2.5 (is_limit_cone). Let D be a diagram on the graph G.
A cone µ over D, with vertex L, is an (abstract) limit for D if for every small
type X : U, the map (µ ◦ −) : (X → L) // Cone(X;D) is an equivalence.

By abuse of notation, we often speak of L being the limit of D, when the
cone µ is implicit.

Most of the theorems of the preceding section generalize immediately. In
particular,

Proposition 3.2.6. Given any two limit cones for the same diagram, the
canonical map between their vertices is an equivalence; conversely, the com-
position of any limit cone with an equivalence is again a limit cone.

Again as in the previous section, there is a standard construction of the
limit:

Definition 3.2.7 (limit). Let D be a diagram over a graph G. The (stan-
dard) limit LimD is the type of pairs (x, α), where

• x :
∏
i:G0

D(i);
• α :

∏
i,j:G0, g:G(i,j)((D(g)(xi) xj)).

There is an evident cone from LimD to D (limit_graph_cone), and as
one would hope,

Proposition 3.2.8 (limit_universal). Lim(D) is an abstract limit for D.

Proposition 3.2.9 (is_limit_cone’). A cone µ from X to some diagram
D is a limit for D if and only if the map X // LimD induced by µ is an
equivalence.

One again, we may define maps of diagrams (diagram_map), and show
that Lim is functorial in such maps, and in particular, is functorial in equiv-
alences (limit_fmap_equiv). Since graphs, diagrams, and limits are all
simply built up from arrows, these definitions and results follow straightfor-
wardly once one has given the basic case of commutative squares, seen as
maps between functions. (This is handled in the file CommutativeSquares.)

3.2.3. Examples and properties.

Example 3.2.10 (pb_as_lim_equiv, in Limits2). In Example 3.2.3 above,
we saw that cospans correspond to diagrams over a certain graph. Then
cones over these diagrams correspond to cones over the cospans, as originally
defined; and a diagram-cone is a limit exactly if the corresponding cospan-
cone is a pullback.

Example 3.2.11 (lim_as_eq). Just as in the classical 1-categorical theory,
the limit over a diagram D may be constructed as an equalizer of maps
between products: ∏

i,j:G, g:G(i,j)

D(i) ////
∏
i:G

D(i)
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Various useful facts are also straightforward to deduce from the standard
construction; for instance,

Proposition 3.2.12 (trunc_limits_preserve_trunc, in Limits2). If D
is a diagram on some graph, and each type D(i) is an n-type, then LimD is
an n-type; hence via the canonical equivalence, so is any other limit for D.

3.2.4. Why not categories? One might reasonably ask here: why have we
considered limits only over graphs, not over categories as is usual in the
1-categorical theory?

The problem—as ever in homotopical settings—is one of coherence. Defin-
ing a category internally is roughly analogous to defining an (∞, 1)-category
externally; that is, it requires not only identity, composition, associativity,
and the like, but also higher-dimensional data ensuring the coherence of the
paths witnessing the associativity axioms, and so on in arbitrarily high di-
mensions. While we hope that this will eventually be possible in the type
theory, it is currently far from clear how to present it.

In defining categories, this problem can be avoided by assuming trun-
catedness of the types of morphisms; see [AKS13] for a development of
the resulting theory. However, to talk about diagrams of arbitrary types
over such categories would once again require an infinite family of coher-
ence conditions, essentially since one is presenting an ∞-functor into the
(∞, 1)-category of all types, which is not generally n-truncated for any n.

However, working with graphs avoids these issues entirely: a map out of a
graph (or equivalently, out of the free category thereon) consists purely of 0-
and 1-dimensional data, with no coherence required. (More generally, one
could use a similar approach to describe diagrams over finite-dimensional
computads or semi-simplicial objects without confronting coherence issues.)

3.3. Pointed types and fiber sequences.

3.3.1. Definitions. The formal definitions and theorems described in this
section are found in PointedTypes.

Definition 3.3.1 (pointed_type). A pointed type (A, a0) is a type A, to-
gether with an element a0 : A, the basepoint. (We will often refer to both
the pointed type and its underlying type as A, and write pt(A) for the
basepoint.)

Definition 3.3.2 (pointed_map). A map of pointed types (or pointed map)
(f, p) : (A, a0) // (B, b0) consists of a function f : A //B, together with a
path p : (f(a0) B b0). (Again, we will often write f for the whole pointed
map, and pt(f) for its associated path.)

The loop space construction Ω lifts naturally to a map from pointed types
to pointed types, setting ΩA := ((ptA ptA), refl(ptA)). One can there-
fore iterate it, giving the n-fold loop spaces ΩnA of a pointed type. More-
over, this has an associated action on maps. A pointed map f : A // B
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induces a pointed map Ω(f) : ΩA // ΩB, with underlying map sending
q : (ptA ptA) to pt f � f [q] � pt f : (ptB  ptB).

Similarly, the homotopy fiber construction hfib lifts naturally to the point-
ed world. Given a pointed map f : A // B, write hfib(f) for the pointed
type given by hfib(f, ptB), with basepoint (ptA, pt f); and the inclusion
hfib(f) //A is again a pointed map.

3.3.2. The long exact sequence of a pointed map. As an application of the
above tools, we can now recover the long exact sequence associated to a
pointed map. This sequence is a basic but powerful computational tool in
classical homotopy theory, and promises to be so also in homotopy type the-
ory: [Uni13, 8.5], for instance, gives a type-theoretic version of the classical
proof that π3(S2) ∼= Z, using the long exact sequence of the Hopf fibration.
Similarly, one can straightforwardly reconstruct the classical theory of cov-
ering spaces, as families of sets varying over a type, and conclude that they
induce isomorphisms of higher homotopy groups.

Definition 3.3.3 (hfiber_ptd). A fiber sequence consists of a pair F
g //E

f //B
of pointed maps, together with an equivalence F ' hfib(f) commuting with
the inclusion hfib(f) // E.

Note that up to canonical equivalence, a fiber sequence is determined
simply by the single pointed map E //B.

The following theorem is found in LongExactSequences.

Theorem 3.3.4 (hfiber_sequence, Omega_to_hfiber_seq_0, et seq.).
Given a pointed map f : E //B, there is a sequence of maps

. . . // Ω2B // ΩF // ΩE // ΩB // F // E //B

in which every pair of consecutive maps forms a fiber sequence.

Proof. Taking F := hfib(f), it is sufficient to prove that the homotopy fiber
of the inclusion F //E is pointed-equivalent to ΩB; subsequent stages follow
by iteration. One can prove this equivalence by direct construction; alter-
natively, the results of Section 3.1 allow us to give a rather more conceptual
proof, due originally to Mather [Mat76, Lem. 32]:

• //

��

F //

��

1

pptBq
��

1
pptEq// E

f // B

By the two pullbacks lemma, the pullback of the left-hand square is
equivalent to the pullback of the whole rectangle. But by Examples 3.1.14
and 3.1.15, these pullbacks are respectively equivalent to the homotopy fiber
of F // E, and to the loop space ΩB. �
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4. Reflections on the formal verification

Formalizing the constructions of Sections 2 and 3 was often straightfor-
ward: many of the definitions are very naturally expressed in the language
of type theory, and verifying their properties is often just a matter of un-
packing definitions and applying straightforward logical manipulations and
background facts. Sometimes, however, additional effort was required. In
this section, we survey some of the practical lessons learned during the for-
malization.

4.1. Limitations. One fundamental challenge that arises comes from work-
ing purely in the type theory. In classical approaches to homotopy theory,
one always has an extra external scaffolding available, with (in particular)
strict, on-the-nose equality on all types of objects. One typically expects the
main results and constructions to respect appropriate notions of equivalence,
but one is free to use intermediate constructions that do not.

Developing the homotopy theory in HoTT, we are constrained to work
entirely in a homotopy-invariant manner, rendering some classical techniques
unavailable. In most cases, some fully invariant approach is reasonably
apparent; but sometimes, one is not. We saw such a case in Section 3.2:
we do not know how to represent the notion of a diagram over an arbitrary
category, and so restricted attention to (diagrams and limits over) graphs.

4.2. Proof-relevance. Another difficulty lies in getting used to thinking
of proofs of equalities as constructions that one might need to prove things
about later on.

In traditional formalizations, equality is proof-irrelevant : different proofs
of the same equality are not logically distinguishable. In Coq, for instance,
one could safely end them with the keyword Qed, which renders them opaque,
meaning that one cannot later access their contents. In traditional mathe-
matics, this makes sense; once one has an equality, one only needs the fact
that it holds, treating the proof as a black box.

In HoTT, however, equality is proof-relevant: a path type may have mul-
tiple logically distinct inhabitants. When constructing equality proofs in
this setting, one typically needs to end an equality proof with the keyword
Defined, allowing the user to unfold that definition later on. The specifics
of the proof matter; one tries to keep proofs as clean and short as possible,
using lemmas and constructions with known, previously proven properties.
Unfortunately, this means that several of Coq’s powerful tactics (notably
the rewrite family) are somewhat unsatisfactory in our setting: the paths
they produce are difficult to reason about later.

On the other hand, some important statements remain proof-irrelevant.
If a type has been shown to be a proposition, one knows that any two
elements of it are canonically equal; so one may make such an element
opaque without losing any logical content. Even so, it is often convenient to
leave such objects transparent, to retain their computational content.
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For instance, for a function f, the type IsEquiv f (the property that f

is an equivalence) is a proposition; so in principle one may safely render a
proof of this opaque. However, one often uses such a proof to produce an
inverse for f; if the proof was transparent, then the resulting inverse will
retain computational properties from its construction, whereas if the proof
is opaque, one must reason explicitly about the action of the inverse. We
formed no clear convention on this: sometimes it turned out more convenient
to keep such proofs transparent, for easier reduction in later proofs; in other
case, this was unnecessary, and making the proofs opaque gave more efficient
compilation.

4.3. Constructing paths. The most fundamental type constructor in ho-
motopy type theory is the type of paths, and the most challenging parts of
proofs usually involved constructing paths between complex objects. Given
the subject matter, we never had to pass beyond the 2-categorical level,
constructing paths between paths; but even so, this required a good deal of
care, and facility with path algebra.

One recurring situation was the construction of paths between elements
of a dependent sum, or elements of a record type with dependencies be-
tween components. For example, if (a, b) and (a′, b′) are elements of a type∑

x:AB(x), constructing a path between these two elements involves con-
structing a path p from a to a′, and then constructing a path q from the
transport of b along p to b′. Thus in general we have:

Lemma total_paths {A : Type} {B : A -> Type}

{s s’ : total B}

(p : paths (pr1 s) (pr1 s’))

(q : paths (p # (pr2 s)) (pr2 s’))

: s = s’.

where pr1 and pr2 denote the projections from the total space
∑

x:AB(x).
For interactive, tactic-based proofs, we generally found it useful to bundle
the arguments p, q into a single structure:

Lemma total_paths’ {A : Type} {B : X -> Type}

{s s’ : total B}

: { p : pr1 s = pr1 s’ & p # pr2 s = pr2 s’ } -> s = s’.

Recall that here { p : pr1 s = pr1 s’ & p # pr2 s = pr2 s’ } is no-
tation for a dependent sum, denoting the type of pairs (p, q) as above. When
constructing a path between elements of a dependent sum, even when p is
explicitly available, applying (total_paths p) sometimes fails to infer im-
plicit arguments. Instead, applying total_paths’ leaves the goal of provid-
ing the pair (p, q), providing the user explicitly with their required types.
The tactic exists p can then be used to give the first component, leaving
the goal of constructing the second path q interactively.
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The problem is that transport is rather difficult to work with. There are
many library lemmas about how its behaviour depends on the dependent
type B, which in principle allow one to work with transported terms; but we
found it more convenient to directly give tailored variants of total_paths
for each specific Σ- and record type.

For example, taking a cospan f : A //C, g : B //C, the standard pullback
of f and g is given by the type

∑
x:A,y:B (fx gy). Using total_path

to provide a path in this type between triples (x;(y;p)), (x’;(y’;p’))

would require three paths q : x = x’, r : q # y = y’, and s : r # q

# p = p’. Notice, however, that in this case the second component, y, does
not depend on x, so the transport is trivial; and moreover, the doubly-
transported third component can be explicitly described as a composite.
Thus, one can provide the following lemma to construct a path between two
elements of the standard pullback:

Definition pullback_path’ {A B C : Type} {f : A -> C} {g :

B -> C}

(u u’ : pullback f g)

: { p : pullback_pr1 u = pullback_pr1 u’

& {q : pullback_pr2 u = pullback_pr2 u’

& (ap f p)^ @ (pullback_comm u) @ (ap g q)

= pullback_comm u’ } }

-> u = u’.

The process of analyzing the canonical data for presenting a path between
elements of a complex type, and writing lemmas to construct and work with
such paths, was crucial to the formalization.

To consider one last example of this sort, recall that a cospan cone, that
is, a diagram on the data f, g above, consists of a space, X, and maps h and
k from X to A and B, respectively, making the diagram commute.

Definition cospan_cone {A B C : Type} (f : A -> C)

(g : B -> C) (X : Type)

:= { h : (X -> A) &

{ k : (X -> B) & forall x, (f(h x)) = (g(k x)) }}.

A path between two such cones involves, in particular, a path between the
family of paths in the third component:

Definition cospan_cone_path

{A B C : Type} {f : A -> C} {g : B -> C} {X : Type}

{Phi1 Phi2 : cospan_cone f g X}

(p : cospan_cone_map1 Phi1 = cospan_cone_map1 Phi2)

(q : cospan_cone_map2 Phi1 = cospan_cone_map2 Phi2)

(r : forall x:X,

cospan_cone_comm Phi1 x = (ap f (ap10 p x)) @

cospan_cone_comm Phi2 x @ (ap g (ap10 q x))^)
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: Phi1 = Phi2.

Here, cospan_cone_map1, cospan_cone_map2, and cospan_cone_comm refer
to the three components of a cospan cone in the preceding definition. As
with total_paths, we also give a version cospan_cone_path’ that packages
the required components into a dependent sum, and is often more convenient
in interactive proofs.

The advantage to these formulations is that it is comparatively straight-
forward (using lemmas from the HoTT library) to reason about transport
operations their interactions with each other, as well as with path operations
such as concatenation and inversion.

Returning to the question of the path-algebra itself, we found the for-
malization to require significant facility with such calculations. The HoTT
library has a number of tactics for automating common manipulations and
simplifications, but we found these tactics generally slowed down the proof-
checker significantly. So, for the most part, we ended up giving such calcu-
lations by hand, building them explicitly from basic lemmas.

4.4. General strategies. We found it important to develop our theories
and proofs in a modular way. The value of modularity in interactive the-
orem proving is well understood (see, for example, [GAA+13]), but in the
context of homotopy type theory, it takes on additional significance. For
one thing, many statements involving paths can only be proved when stated
in full generality (to make available the elimination for Id-types). As a
consequence, some facts cannot be derived in the course of a proof, on
the fly, but have to be expressed independently. The fact that one often
needs to reason about the construction of paths provides an additional rea-
son to construct such proofs out of individually-named component lemmas:
doing so allows one derive properties of the components individually, and
then invoke these properties later on. In other words, reasoning about a
modularly-constructed proof allows one to work with the individual lemmas
and unpack their contents selectively, as needed. In contrast, the failure to
modularize can result in formal terms that are overwhelming in complexity.

Perhaps the most important lesson we learned was not to expect too
much from an interactive theorem prover. Although homotopy type theory
provides a powerful framework to support homotopy-theoretic reasoning,
one still needs a thorough understanding of the relevant mathematics. To
get some of the more complex proofs and constructions to work, we found it
vitally important to find the right definitions, the right way of formulating
assertions, the right supporting infrastructure, and the right proof strategies.
This required thinking carefully about the mathematical content, avoiding
the temptation to simply dive in and hack.

This should not suggest that Coq was no help at all. Indeed, Coq was
excellent for helping us keep track of definitions and formulate statements
correctly. Especially for more complex path-constructions, applying stan-
dard rules to unwrap and reduce the contents of a goal type was an extremely
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useful aid to finding the term required. In practice, we found ourselves go-
ing back and forth between the blackboard and Coq, using Coq to negotiate
the inevitable syntactic bureaucracy, and then returning to the blackboard
to recoup intuitions and plan proof-strategies. In this way, Coq earned its
keep, serving as a “proof assistant” in a very real sense.

4.5. A case study: the two pullbacks lemma. We close with a dis-
cussion of the abstract two pullbacks lemma, Proposition 3.1.11, by way
of illustration. Somewhat to our surprise, this turned out to be the most
difficult proof in our formalization. In the end, we tried three substantially
different approaches before finding one satisfactory. All three can be found
in Pullbacks3_alt.

Consider for now just the forward direction of Proposition 3.1.11, which
states that if both squares have the universal property of pullbacks, then so
does the composite. Let f : A //C, g : B1

//C, h : B2
//C, and k : P1

//B1

denote the maps so labeled in the diagram there. Our first approach invoked
the concrete two pullbacks lemma, Proposition 3.1.10, which states that

Pb(g∗f, h) ' Pb(f, g · h).

We then derived the following chain of equivalences, using the fact that cones
from X to the cospan (f, g) are equivalent to maps from X to the standard
pullback:

(X → P2) ' Cone(X; k, h)

' (X → Pb(k, h))

' (X → Pb(g∗f, h))

' (X → Pb(f, g · h))

' Cone(X; f, g · h).

Here the second and last equivalences are just the universal properties of
the concrete pullbacks. The notation g∗f in the third equivalence denotes
the pullback of f along g according to the concrete pullback construction;
this equivalence relies on the fact that any abstract pullback is equivalent
to the concrete one, and the fact that the concrete pullback construction
is functorial. The fourth equivalence is just (post-composition with) the
concrete two pullbacks equivalence, Proposition 3.1.10.

The equivalence of the left- and right-hand sides of the chain above almost
gives what we want: however, the universal property for the outer pullback
square requires not just that an equivalence exists, but that the canonical
map from X // P2 to Cone(X; f, g · h) is an equivalence.

What remains is thus to show that the map we have just constructed is
homotopic to the canonical one! This, however, turned out to be extremely
difficult. The problem was a failure of modularity: all we could do was
unwrap the long, complicated term, and calculate. We managed to do this,
but although the tactic engine declared the effort successful, we were unable
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to get it past the type-checker (presumably because the resulting term was
too large).

Our second approach involved constructing the desired inverse by hand.
Any cone µ : Cone(X; f, g · h) over the outer cospan can be reinterpreted
as a cone µ′ : Cone(X; f, g) over the right cospan. Applying the universal
property of the cone from P1, we obtain a map m1 : X // P1 inducing
µ′; we can then take m1 as the first leg of a cone µ′′ : Cone(X; k, h) on
the left cospan. Applying the universal property of the cone from P2 then
gives a map m2 : X // P2, as desired. However, the task of proving that
this construction is indeed a two-sided inverse for (µ ◦ −) turned out to be
difficult. For example, the first task requires one to show that, starting with
a cone µ : Cone(X; f, g · h), carrying out the procedure above to obtain a
map from X to P2 and then taking the induced cone, the resulting cone
ν : Cone(X; f, g) is connected by a path to the original µ. As described in
Section 4.3, this involves showing not only that the component maps agree,
but also that the resulting families of equality proofs agree as well; this turns
out to be an interesting but laborious exercise in bicategorical path-algebra.

We finally settled on the approach described in Section 3.1.3, which es-
tablishes both directions of Proposition 3.1.11 simultaneously. Showing that
the type Cone(X; k, h) of cones on the left cospan is equivalent to the type
Cone(X; f, g · h) of cones on the outer cospan required some effort, but the
result was still considerably cleaner than either of the previous proofs. With
that in hand, all that remained was to show that the triangle depicted in the
proof of Proposition 3.1.11 in Section 3.1.3 commutes. To our very pleasant
surprise, this fact had a one-line proof in Coq:

Lemma two_pullback_triangle_commutes {P1 : Type}

(C1 : cospan_cone f g P1)

{P2 : Type} (C2 : cospan_cone (cospan_cone_map2 C1) h P2)

{X : Type} (m : X -> P2)

: top_cospan_cone_to_composite C1 (map_to_cospan_cone C2 X

m)

= map_to_cospan_cone (top_cospan_cone_to_composite C1 C2) X

m.

Proof.

exact 1.

Defined.

In other words, the left- and right-hand sides are definitionally equal.
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