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Abstract

Let P be a small pretopos. Makkai showed that the pretopos (i.e. the language) can
be recovered from the category of models of the pretopos (i.e. Set-valued functors
preserving the pretopos structure). The realization that ultraproduct functors can be
expressed as composition of functors on categories of sheaves over topological spaces
opens the door for using continuous families of models, that is, categories indexed
over topological spaces.

We introduce a special kind of category indexed over topological spaces in which it
is possible to define ultraproduct functors. This involves continuous functions f : ¥ —
X for which the functors f. : Sh(Y) — Sh(X) preserve the pretopos structure. We
give a characterization of such functions. Each of these indexed categories produces

a pre-ultracategory in the sense of Makkai.
Set(-)

We also consider the 2-adjunction PRET O P°?

D C AT and the 2-monad
it generates. We show that each algebra for this 2-monad carries a pre-ultracategory
structure as well. We induce another 2-monad over the category of algebras and show
that these new algebras carry the structure of ultracategories.

We combine both approaches by defining a 2-adjunction over the 2-category of
special indexed categories mentioned above and show that the corresponding algebras
also carry ultracategory structures.

Finally, aiming at giving filtered colimits a bigger role in the picture we generalize
a theorem of Lever, namely, that indexed functors from the indexed category that has
the category of sheaves Sh(X) over the topological space X, to itself is equivalent to

the category of filtered colimit preserving functors from Set to itself.

Vil
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Introduction

The concept of pretopos was introduced by Grothendieck in [1] in relation with co-
herent toposes. A pretopos is a category with finite limits, strict initial object, stable
disjoint finite coproducts and stable quotients of equivalence relations. Functors be-
tween pretoposes that preserve the pretopos structure are called elementary. Small-
ness is also required in [1] but we allow our pretopos to be “big”, so for example
the category Set of sets is a pretopos. Makkai and Reyes in [18] study the rela-
tion between coherent theories and pretoposes. They show there how to construct
a small pretopos for any coherent theory that essentially codifies the information of
the theory in the sense that the category of models for the coherent theory and the
category of elementary functors from the pretopos are equivalent. That is we can
replace the theory by the pretopos. The construction of the pretopos involves as a
first step the construction of a logical category. A category is logical if it has finite
limits, stable finite sups of subobjects and stable images. This logical category can
also replace the theory, however there are two good reasons to use pretoposes instead
of logical categories. The first one is that there is a criteria to determine whether an
elementary functor between pretoposes is an equivalence (see 7.1.8 in [18] or Lemma
1.15 below). The second reason is the so called conceptual completeness: If an el-
ementary F : P — Q between pretoposes induces by composition an equivalence
Mod(Q) — Mod(P) then F is an equivalence (see 7.1.8 in [18] or Theorem 1.16
below). Here Mod(P) denotes the category of elementary functors from P to Set.
There are some questions to be asked in this context. One is whether it is possible
to recover the language from the category of models. Another one is under what

conditions a category is a category of models. On the one hand we want to recover



the pretopos P from the category Mod(P) and on the other we want to find con-
ditions on a category A for it to be of the form Mod(P) for some small pretopos
P. This resembles for example the well known Gabriel-Ulmer duality (see [17]) in
which we have equivalences C — LFC(LEX(C, Set), Set) for any small left exact
category C and. A — LEX(LFC(A, Set), Set) for any locally finitely presentable
category A where LEX denote the category of left exact categories in the second
universe and LFC is the category of categories with small limits and small filtered
colimits in the second universe. Makkai in [15] proves one half of the above duality
for pretoposes. Notice first that in the equivalence C — LFC(LEX(C, Set), Set)
what is done is to consider functors LEX (C, Set) — Set and add conditions on
them (the LFC part) to cut down to the ones that are of the form evc for some C
in C. For pretoposes we have to replace LEX (C, Set) by Mod(P). Mod(P) has
filtered colimits and they are calculated as in Set”. However we can not in general
guarantee the existence of any other kind of limits or colimits. What can be used
is another construction that is also pointwise, namely the ultraproduct construction.
Ultraproducts are mixed limits (filtered colimits of products) and therefore have very
few canonical arrows, as opposed to honest limits or colimits. In [15] the part corre-
sponding to LFC is taken by ultracategories. An ultracategory is obtained in two
steps. First a pre-ultracategory is a category A together with a functor [H] : Al 5 A
for every ultrafilter (7,4). Functors between them have transition isomorphism re-
lating the corresponding functors of the form [i]. The concept of ultramorphism is
introduced to supply enough arrows to and from ultraproducts. An ultracategory is
a pre-ultracategory together with ultramorphisms. This suffices to prove an equiv-
alence of the form P — UC(Mod(P), Set) where UC denotes the category of

ultracategories in [15]. The other side of the question is still open.

The idea that started this paper is that we can recover the ultraproduct functor

U : Set! — Set for every ultrafilter (/,U) using categories of sheaves. Specifically
the functor (/] is naturally equivalent to the composition Set! — Sh(I) o Sh(pI)

—u—Set where 31 is the Stone-Cech compactification of I, p : I — BI is the usual

embedding and U* is the functor associated to the continuous function U : 1 — I



that picks the ultrafilter & € BI. So we consider categories indexed over the cat-
egory Top of topological spaces and continuous functions. We follow Paré and
Schumacher [19], the approach in Benabou [3] is via fibrations. A Top-indexed
category A consists of a category AX for every topological space X and a functor
f*: AX — AY. for every continuous function f : ¥ — X subject to some coher-
ence conditions. In particular if we take the category Sh(X) for every topological
space X and the usual f* : Sh(X) — Sh(Y) we obtain a Top-indexed category
that we denote by SET. This category plays the role of sets in Top-indexed cat-
egories. f* : Sh(X) — Sh(Y) is left exact and has a right adjoint. Thus f~ is
elementary. We can define then, for every pretopos P the Top-indexed category
of models of P. We take the category Mods,x)(P) for every space X and define
f*: Modsx)(P) — Modsyy)(P) by composition with f* : Sh(X) — Sh(Y) for
every continuous f : Y — X, where Modg x)(P) denotes the category of elemen-
tary functors from P to Sh(X). We denote this Top-indexed category by MOD(P).
To be able to recover the ultraproduct functors we have to take into account the
functors of the form u. as above. For this purpose we introduce the concept of
ultrafinite function: A continuous function f : Y — X is called ultrafinite if the
functor f. : Sh(Y) — Sh(X) is elementary. Notice that for an ultrafinite f the
functor f* : Modgyx)(P) — Modsy)(P) has a right adjoint. Furthermore we
recover the ultraproduct functors [U] : Mod(P)" — Mod(P) as the composition

Mod(P)I = Mod s, y(P) Site Mods,31)(P) AL Mod(P). Accordingly we char-
acterize those continuous functions that are ultrafinite and restrict to Top-indexed
categories for which f* has a right adjoint f. for every ultrafinite f. Functors between
these are those that behave nicely with these adjoints. We denote this category by
£os. With the category £os we can recover the pre-ultracategory structure but
unfortunately it is not enough to recover the general ultramorphisms.

There is another way to recover the pre-ultracategory structure via algebras over

C AT, and with a monad over these algebras we can also recover the ultramorphisms.
Set(-)

Consider the 2-monad T generated by the 2-adjunction PRETOP°? CAT.

Mod(.)
We can define a functor T-ALG — PUC where T-ALG denotes the 2-category of

T-algebras and PUC denotes the 2-category of pre-ultracategories. We obtain an-



T-ALG(., (Set, ¥))

other 2-adjunction PRETOP® T-ALG where ®p and U are
(Mod(.), ®())
T-algebra structures we define below. Let S denote the 2-monad generated by this

adjunction. We can define then a 2-functor S-ALG — UC where UC denotes the

2-category of ultracategories.

Our proofs about algebras are based on the following observation. Suppose we
have functors H : A — B, R: B — A and a natural transformation 6 : RH — 14.
If B has a functorial weak initial object then A has a functorial weak initial object
as well. A functorial weak initial object is a weak initial object with a functorial
choice of arrows from it to any other object. When the natural transformation 6 is
an isomorphism, the existence of functorial weak colimits in B implies the existence
of functorial weak colimits in A. It is well known that colimits exist if the category
has functorial weak colimits and split idempotents. In this context it is easy to see
that A has split idempotents if B does.

The above setting is specially well suited for algebras over a 2-monad. If we have
a 2-monad T = (T, n, 1) over CAT for example and a strict algebra (A, ®) then one

of the diagrams for @ is

A
A2 . TA

14\ /(I)
A

[f TAis a ‘good’ category then A will necessarily inherit some of the good properties
of TA. In particular the existence of certain kinds of limits or colimits. Furthermore,
the other commutative diagram for algebras will tell us how to calculate these limits
and colimits on A: Simply take the diagram over A, compose with nA, calculate
the limit or colimit in 7A and apply ®. For example consider the 2-monad given by
the 2-adjunction Set-) 4 Set) : CAT® — CAT. In this case having an algebra
structure on a category A implies that A is complete and cocomplete. We note here
that there are some size problems to be resolved.

One way of trying to settle these size problems and at the same time give a good
framework in which to attempt a solution to the second problem (namely charac-
terizing those categories that are of the form Mod(P)) is to combine the last two

Los(_, SET)
0D(.)

approaches. That is, we define a 2-adjunction PRETO P £L£os, gen-




erate the corresponding 2-monad T' and define a functor T-ALG — UC.

Finally, in a closely related development we generalize a theorem of Lever [11].
Lever showed that there was an equivalence between the categories F2lt(Set, Set)
of filtered colimit preserving functors from Set to Set and Top-ind(SET,SET) of
Top-indexed functors from SE7T to SET. We define a Top-indexed category A
for every category A with filtered colimits and products by taking coalgebras over
A1 for every topological space X and show that we get an equivalence between
Filt(A, Set) and Top-ind(A,SET). The definition of the cotriple is very similar to
the one induced by the adjunction Sh(X)=— SetX|. This will allow us to prove that
whenever we have a Top-indexed functor F' : MOD(P) — SET we have that the
functor F! : Mod(P) — Set preserves filtered colimits.

The account chapter by chapter is as follows.

In chapter 1 we review the definition of pretopos and its relation to coherent
toposes; we consider some properties of pretoposes we will need later, especially the
ones concerning equivalence relations. We show that for any pretopos P and any
object P in P the category P/P is a pretopos and that for any other pretopos
Q, the category Modg(P/P) is equivalent to the category whose objects are pairs
(M,a) with M in Mod(P) and a a global element of M P. We use this description
to give a categorical proof of the existence of an arrow into an ultrapower of another
model under certain conditions. Finally we give a combinatorial description of the
left adjoint to the forgetful functor Pretop — Lew.

Chapter 2 is devoted to the concepts of ultracategory and ultramorphism. There
we give a proof of Makkai’s theorem (the equivalence of a small pretopos P and the
category UC(Mod(P), Set). We follow Makkai’s [15] in this chapter fairly closely.

In chapter 3 we consider categories indexed by topological spaces. We first review
the concepts of indexed category theory drawing mainly from Paré and Schumacher
[19] and also from Lever [11]. We then introduce the concepts of ultrafinite continuous
function. The Top-indexed categories that have right adjoints for the functors induced
by ultrafinite functions are introduced next and are called Los categories. We close
the chapter with a characterization of ultrafinite continuous functions.

In chapter 4 we start with a brief review of the folklore of functorial weak (co)limits.

We then explore the relation between functorial weak (co)limits and retractions of



categories. We apply these results to show that if a left exact category C has an alge-
bra structure for the 2-monad generated by the adjunction Pretop>— Lez, then C
is a pretopos. This points the way to show that the forgetful functor Pretop — Lex
is monadic. Further analysis of this will have to await another paper. We again ap-
ply these results.to show that algebras for different 2-monads over C AT have certain
limits and colimits. We consider then in detail the two successive monads of preto-
poses over C AT we are interested in and their relation with pre-ultracategories and
ultracategories.

In chapter 5 we combine the approaches from chapters 3 and 4 by defining a monad
over the category £ 0s. We again relate this category of algebras with ultracategories.

In chapter 6 we define Top-indexed categories of coalgebras over categories with
filtered colimits and products. We generalize the result in Lever [11] and use this
result to show that any Top-indexed functor F : MOD(P) — SET satisfies that
F': Mod(P) — Set preserves filtered colimits.



A Word About Size

We work in the setting of Grothendieck universes. That is we fix Grothendieck
universes U; € U, € Uj;. Sets, pretoposes, categories in U; are called small.
The categories of small sets, small pretoposes, small categories are denoted by Set,
Pretop, Cat respectively. We denote the category of sets in U, by SET, similarly
PRETOP and CAT denote the categories (2-categories rather) of pretoposes and
categories in the second universe U, respectively. Then Set is an object in SET.
SET is not a category in U, but it is a category in Us.

In this paper it is always assumed that limits and colimits are taken over diagrams

with small domain.



Chapter 1

Pretoposes

1.1 Definition and Background

As we pointed out in the introduction the concept of pretopos comes from [1]. In this
paper however we adopt the definition given in [15] that is equivalent except that the

former definition asks for smallness.

Definition 1.1. The category P is a pretopos if and only if

1. P has finite limits.

2. P has a strict initial object.

3. P has stable disjoint finite coproducts.

4. P has stable quotients of equivalence relations.

A functor F : P — Q between pretoposes is called elementary if and only if it
preserves finite limits, initial object, finite coproducts and quotients of equivalence

relations.

If we denote the initial object by 0, it being strict means that for every P in P,
an arrow P — 0 is necessarily an isomorphism.
Given objects Q1,.., @, in P, the coproduct is disjoint if for every j, k € {1, .;,7z}

J # k implies that the square
0 —Q;

i

Qk Tk’ UZ=1 Qk



is a pullback. Given R — IIi Qx in P we can form the pullback

j LT

W |

Qk —1__’ Uﬁ:l Qk
k

for every k. We say the coproduct is stable if the induced map

n T e ;

k=1
is an isomorphism. It is not hard to see that, if the coproducts are disjoint and stable,
then the injections into the coproduct are monomorphisms.

Given an equivalence relation P=—Q in P, a quotient for the equivalence relation

is a coequalizer Q—T—' R of f and g such that the square

| J I,
b
Q——R

is a pullback. It 1s stable if the pullback of r along any arrow A — R is the quotient
of some equivalence relation.

Given pretoposes P and Q we denote by Modg(P) the category whose objects
are elementary functors from P to Q and whose arrows are natural transformations
between these. We call Modg(P) the category of models of P in Q. Clearly, the
category Set is a pretopos and for any pretopos P we denote Modge:(P) simply by
Mod(P).

Following the notation from (8] (that refers in its turn to [1]), a topos E is called
coherent if it is equivalent to a category of the form Sh(C, J) for somessite (C, J) with
C a small left exact category and J generated by a pretopology in which every covering
family is finite. An object X in a topos E is called compact if every epimorphic
family {¥; — X} with codomain X contains a finite epimorphic subfamily, X is
called stable if, for any pair of arrows S — X « T with S and T compact we have
that the pullback S xx T 1s compact, X is called coherent if it is both, compact and
stable. We have (see 7.37 in [8])
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Theorem 1.1. If E is a coherent topos and E.,, is the full subcategory of E of
coherent objects, then E ., ts an essentially small pretopos and the inclusion E.,;, —

FE is elementary. O

Given a small pretopos P we can consider the precanonical topology J (J is gen-
erated by the pretopology whose covering families are all finite epimorphic families).
We have (see 7.40 in [8])

Theorem 1.2. A topos E is coherent if and only if there exists a small pretopos
P such that E is equivalent to the category Sh(P,J) where J s the precanonical
topology on P. Furthermore, the pretopos P is determined up to equivalence by E.
O

The pretopos P determined by a coherent topos E is of course E ;. From 7.45

and 7.47 in [8] we have

Theorem 1.3. If P is a small pretopos, J the precanonical topology on P and M,
the elementary functor My = (P — (Sh(P,J))econ — Sh(P,J)), then for every
Set-topos E the functor Topos/Set(E,Sh(P,J)) — Modg(P) that assigns to

*

every f : E — Sh(P,J) the composition P%—Sh(P, J)—LE is an equivalence.
d

From [18] we know that finitary coherent theories correspond to small pretoposes,
so what the theorem above says is that Sh(P,J) is the classifying topos for the
coherent theory P over Set, that is Sh(P,J) = Set[P)].

We will have the opportunity to use Deligne’s theorem (see 7.44 in [8])
Theorem 1.4. A coherent topos has enough points. O

As it is pointed out in [8] the proof of Deligne’s theorem resembles that of Godel-
Henkin completeness theorem for finitary first-order theories. This is done in [18].

We will use the following result as well (see 7.17 in [8]). Recall that (in [8]s

notation) a surjection F' — FE is a geometric morphism F — F such that f* reflects

isomorphisms (equivalently f* is faithful, equivalently thé unit for the adjunction
f* - f. is mono (see 4.11 in [8])).
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Lemma 1.5. If a Grothendieck topos E has enough points then there exists a sur-
jection Set/l — E for some I in Set. O

1.2 Some properties of pretoposes

In this section we include some properties of pretoposes we will use later on. Many
more properties can be found in [18]. Following the notation in [18] we call a morphism

f:A— Bin a category C surjective if for every commutative diagram

L

By

with m a monomorphism, m is necessarily an isomorphism. Then an image of an
arrow f : A — B, if it exists, is a subobject m : By>— B such that there exists a

surjective g : A — By with

f

N

commutative. In a category with pullbacks images are unique up to isomorphism.

A B
1

Images are called stable if the pullback of a surjective is a surjective.

Lemma 1.6. Let Cy,..,C, be objects in a category C with finite limits and finite

coproducts. The following condition is equivalent to [[;_, Ck being stable.

For every diagram [1};_, Ck LIL D~2— A the square

k=1 P A k=1 Ck
(k1) (fx)
D
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is a pullback, if for every k the square

Pk Tk2 C/c
Tk1 1 1 fx
A g D

is a pullback. O

Now, fix a pretopos P for the rest of this section. We have (see 3.3.9 in [18])
Lemma 1.7. P has stable tmages. O

(see 3.3.10 in [18])
Lemma 1.8. P has stable finite sups. O

(see 3.3.5 in [18])

Lemma 1.9. Given objects Py, .., P, in P we have that for every k the k-th injection

ix : P, = 1%, P; is a monomorphism. O

As a matter of fact it can be shown that a category with finite limits, stable finite
sups, stable images, stable quotients of equivalence relations and stable finite disjoint
sums is a pretopos. This is the definition of pretopos given in [18]. From there it
follows that the definition adopted here and the one given in [1] are equivalent except

for the smallness condition (see the discusion after definition 3.4.3 in [18]).

k
Suppose now we have a finite family {Qr ——= R}}_, in P. Consider the pullback
9k

diagrams
Pt G
Djk l l 9k
: R
QJ fj

Lemma 1.10. With the above notations the square

I_I(j,k) ij M Uj Qj
(tkpijk) (9i)
Lg'e (fi)




1'3

is a pullback.

Proof. We do it for n=2. Since finite coproducts are stable, it follows from Lemma

1.6 that for any a : A — P the following square is a pullback

(4 xp Qu)TI(A xp Qz) 2222 g 110,
(m1, 1) (91,92)
P

BN

a

where A x p Q; is the pullback of g; along a and A xp @, is the pullback of g, along
a. For a = (f1, f2) : @1 11Q2 — P we can substitute A xp @1 with Pr I P21 and
A xp Q2 with P[] Paa. O

Suppose now that for every k = 1,..,n we have a pullback diagram

Tk

Py Ry

(Ikl lgk

O ——=—9

Je

Lemma 1.11. With the above notation the square

Hk Tk

[k Pk Lk R
Ik gk Lk gk
[k @k [k Sk

1k fe
is a pullback (i.e. 11 preserves pullback).

Proof. In view of Lemma 1.10 it is enough to show that for all £ we have P ~
Qx X11, sk Ry and that for 7 # k we have Q) 11, Sk Ry ~ 0. For the second one notice
first that 9 X1, S Sk ~ 0 since finite coproducts are disjoint, second that we can

induce a map from @; X11, S Rk to S X1, S Sk and finally that the initial object is
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strict. For the first consider the diagram

- 1R,
B —k o e P
A PR
AS’v AS'.
Qk T S k
le l l ISk l k

Since by Lemma 1.9 the injections are mono we have that the bottom right square
above is a pullback, the other three squares are also pullbacks so the exterior one 1s

a pullback. a

Suppose we have a pair of arrows @ —— P in P. Consider the image of (f,9g)
g

(9 pop

N (r1,m2)
R

We say that (rq,72) is the relation generated by (f,g).

Q

f
Lemma 1.12. Given Q= P in P, if there exists an arrow p : P — @ such that
g

1
fp=1p and gp = 1p then the relation R—_ P generated by (f,g) is reflexive.
L)

Proof. Consider the commutative diagram

™ &

gi ]\1,3

R . -
]

=NL

a

Lemma 1.13. Given Q5 P in P, if there exists an arrow o : Q — Q such that
)



the diagram

™
commutes, then the relation R—= P generated by
T2

(f,g) is symmetric.

Proof. By hypotheses the diagram

0 (f19) p o p
a 1 <7I"2, 771)
Q PxP
(f.9)
commutes. Taking the image of (f,g) twice we get
0 (f,9) PP
R

o o l (T, 1)

R
/ \
. (f,9) For

So there exists a unique & as shown above such that the res

ulting diagram commutes.

O
Now we have a condition that is enough for transitivity. Given Q — P as before,
™ g
and the generated relation' R—= P consider the following diagram
T2
gt i Q
S
P2 ) : R
Nt
Q = R—; P
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where both squares are pullbacks. By the pullback property we can induce h above
such that the resulting diagram is also commutative. Since surjections are stable and
e is a surjection it is easy to see that h is also a surjection.

™
Lemma 1.14. With the above notation R—— P s transitive if there exists an arrow

t: T — @ such that the diagram "2

commutes.

r'181,7281,7252 .
< : ) P x P x P is a monomor-

Proof. First we show that the arrow S

a
phism. Suppose Ab___’. S are such that

a

A——S (7‘151, r9S1, 7‘232>

Pz PP

commutes. Then clearly (ry,r;)s;a = (r1,r2)s1b and (rq,73)sa = (rq,72)s2b. Since
(ri,79) is mono we have sja = s1b and s;a = s3b. Since S is the pullback of ry and

r, we have a = b. Since h is surjective we have a surjection-mono factorization

(fp1,9p1.9p2) Py PxP

\ '/71q:’7291 72Q2

and using the properties we are assuming for ¢ the diagram

T (fp1,9p1,9p2) PxPxP
tl <7T1,7T3>
Q@ PxP

(1.1) (f,9)

clearly commutes. Consider the following surjective-mono factorizations

< <7‘131,T231,T282> PxPxP (7'('1,7!'3) Px P

U
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and

PO WY o
Vﬁv/ R <T1,T'-2>PXP

also commutes. Notice that both compositions are surjective-mono, so we can induce

¢ as shown such that both resulting traingles commute. Define t : S — R as the

14 v

% s u T iy, e
composition S U vV R. Now it is easy to see that
S
t <7‘151,7'252>
R FxP

(r1,72)

,‘1 . . .
commutes. This is enough for R— P to be transitive (see exercise (TRAN) in [2]).
T2
d

1.3 Conceptual completeness

In [18] from any given finitary coherent theory they construct a pretopos that has
the “same” category of models. This is done in two steps, first a logical category is
constructed, a very detailed construction of it is given in [6]. The construction of a
pretopos from a logical category is the second step.

The advantage of using pretoposes instead of logical categories is the following

two theorems from [18], but first we need a definition (also from [18])

Definition 1.2. Given an elementary functor F : P — Q between pretoposes we

say that
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1. The functor F is subobject full iff for every P in P, F' induces an epimorphism
Sub(P) — Sub(FP)

2. The functor F is conservative iff for P in P, F induces a monomorphism
Sub(P) — Sub(FP)

3.

An object Q in Q has a finite cover via F' if there exists a finite family
fi 4 FP"
{Q ()i = 1 },‘:1

such that the family {Qli— @}, is epimorphic.

Observe that F being conservative is equivalent in this context to F' reflecting

isomorphisms.

We have (see 7.1.7 in [18])

Lemma 1.15. If P is a pretopos then an elementary functor F': P — Q between
pretoposes is an equivalence if and only if it satisfies the following three conditions
L. Fis subobject full.

2. F is conservative.

3. Every object of Q has a finite cover via F. O
And (see 7.1.8 in [18])

Theorem 1.16. If F : P — Q is an elementary functor between small pretoposes
such that o F : Mod(Q) — Mod(P) is an equivalence then F is an equivalence.
O

Theorem 1.16 is called conceptual completeness. The proof in [18], besides in-
volving lemma 1.15, involves soundness and completeness theorems and Los-Tarski’s

theorem on sentences preserved by structures.

1.4 Los’ Theorem

A very important example for us of an elementary functor is given by Los’ theorem.
Let (I,G) be an ultrafilter, then we have the ultraproduct functor lim [ (-) : Set! —

—
JEGjEJ

Set. We also denote this functor by [];(-)/G or simply by []g. This version of Los’

Theorem comes from [15]
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Theorem 1.17. (Los’ Theorem) The functor lim TI(.) : Set! — Set is elemen-

Jec,r,eJ

tary.

Proof. (sketch) The proof is not hard but deserves some lines. []g preserves finite
limits since for every J C I the functor [];c; : Set’ — Set preserves limits and
the colimit over elements of G is filtered. Since epimorphisms in Set’ are split,
we have that [Jg preserves epimorphisms. Clearly []g preserves 0. Finally, given
(A;),(Bi) in Set!, we use the fact that G is an ultrafilter to show that the induced
map [1; Ai/G + I1; Bi/G — T11(Ai + Bi)/G is onto. O

1.5 Slice pretoposes

Let P be a pretopos and P an object of P. We have

Lemma 1.18. The slice category P[P is a pretopos

Proof. Since P is left exact then P/P is left exact. If 0 is the initial object in
P then 0 — P is a strict initial object in P/P. The coproduct of Q—i—P and
R-+Pis Q1 RM P and is easily shown to be disjoint and stable. If a pair of
arrows q:k:r in P/P with Q—q—~ P and R— P is an equivalence relation then the
corresponding @ ___,k” R is an equivalence relation in P. Consider its quotient R—é* S
in P. Using the universal property of the quotient we induce a map §—+ P such

that r—ﬁ's is a morphism in P/P. This last arrow is the quotient in P/P. d

Then we have the forgetful functor U : P/P — P that has a right adjoint
Ap: P — P/P. Given f : Q — R in P we have that AplQ)=7p:Q x P - P
and Ap(f) = f x P. We are ready for

Proposition 1.19. The functor Ap: P — P/P is elementary.

Proof. Ap clearly preserves finite limits since it has a left adjoint. Ap(0) = 7p :
0x P — P but 0x P ~ 0 due to the fact that 0 is strict in P. Since binary coproducts
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are stable and for every @, R in P we have that both squares in the diagram

P :

QxPZQ—X———(Q]_[R)xP&IE—RxP

TQ T TR
Q————QUR———F

are pullbacks, we have that (Q[IR) x P ~ (@ x P)[I(R x P). Then Ap preserves
binary coproducts. The proof for preserving quotients of equivalence relations is left
to the reader. O

For any pretopos A we can induce the functor
—o0Ap: Mods(P/P) — Mod4(P).

What we want to do now is to give an equivalent description of the category
Mod o(P/P) in terms of the category Mod 4(P).

Define the category Ela(evp) as follows. The objects of El4(evp) are pairs (M, a),
where M € Mod4(P) and a is a global element of M P, thatis,a:1 — MP in A.
An arrow h : (M,a) — (N,b) in El(evp) is an arrow h : M — N in Mod 4(P) such

that the diagram

] ——8 e MP
P

b\\V P/h

commutes. As usual, when A = Set we drop the subscript.

Theorem 1.20. If A is a pretopos then the categories Ela(evp) and Mod s(P/P)

are equivalent.

Proof.- We define a functor © : El4(evp) — Mod4(P/P) as follows. Given
(M,a) in Els(evp) define ©(M,a) : P/P — A such that O(M,a)(Q — P) is the
pullback

O(M,a)(Q - P) M@
Mgq
1 MP,
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and if
0 I R

Py 4

is a morphism in P/P, we define ©(M,a)(f) : ©(M,a)(Q -5 P) = O(M,a)(Q —

P) as the unique morphism that makes the diagram

O(M,a)(q) MQ
\@(M,a)(f) /
O(M,a)(r) MR
Mgq
Mr
- MP

commute. ©(M,a) turns out to be an elementary functor from P/P to A. Now, if
h:(M,a) — (M',b)isin Ela(evp), then define ©(h) : O(M,a) — O(M’,b) such that
for every Q — P in P/P, ©(h)(q) is the unique morphism that makes the diagram

O(M’,b)(q) M'Q
w(h)(q) hQ/
O(M, a)(q) MQ
{ {Mq M'q
1 5 MP
A
1 7 M'P

commute. We define now a functor in the other direction. Define = : Mod4(P/P) —

El4(evp) as follows. Given a model N in Mod4(P/P), when we apply N to

P>t L pgp

N2
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where § is the diagonal map, we obtain a morphism Né§ : 1 — N(Ap(P)). We define
=(N)=(NoAp,N§). If k: N - N'is a morphism in Mod(P/P) then it is clear
that the diagram

1R N(Ap(P))

NEN, kAR(P)
N'(Ap(P))

commutes. Define Z(k) = kAp : (N o Ap,N§) — (N' o Ap,N'§). It is not hard to
prove that = is a quasi-inverse for ©. O

It is easy to see that the forgetful functor Els(evp) — Moda(P), (M,a) — M
is isomorphic to the composition El4(evp) N Mod s(P/P) = Mod 4(P).

We use this description to give a categorical proof, instead of the usual model
theoretic argument, of the following theorem from [15] we will need later. First a
little notation. Given an ultrafilter (/,G), we have the ultraproduct functor

Mg = lim T1(-) : Mod(P)" — Mod(P).

JegieJ

If we have a family of models (M;); we denote lim T[T ((M;)r) by [1; Mi/G. When

Jegied
we apply this functor to the constant /-family (M); we denote the result by M9. We

denote by § : M — MY the usual diagonal morphism. If we have a monomorphism
Q P in P and a model M in Mod(P), we have that MQ — M P. We may assume
that this mono is actual containment of sets. If we have a homomorphism & : N — M¢
and elements a € MP,b € NP for some P in P such that hP(b) = 0P(a), then it is
not hard to see that for every Q —P in P, b € NQ implies a € MQ. The converse
also holds.

Theorem 1.21. Assume P is small. Let (M,a),(N,b) € El(evp), suppose that for
every monomorphism @Q — P we have that b € NQ implies a € MQ, then there exist
an ultrafilter (1,G) and a homomorphism h: N — M9 such that hP(b) = 6 P(a).

We will prove the case P =1 first

Lemma 1.22. Let M, N in Mod(P), suppose that for every monomorphism @ — 1,
NQ =1 implies MQ = 1, then there exist an ultrafilter (S,G) and a homomorphism
N — MY,



Proof. Notice first that the condition of the lemma is equivalent to saying that
for every P € P such that NP # 0 we have that M P # 0. To see this, consider the
image of P — 1. Since N preserves images, if NP # 0, then N of the image must
be 1. Then M of the image must also be 1, therefore M P # 0. The converse is clear.
Define S to be the set of finitely generated subcategories of EI(N). If I € S, there

exists a diagram 'y : I — EI(M) such that the diagram

I -t EI(N)

|

El(M)— P

commutes, where the functors to P are forgetful functors. To show this, consider
the diagram I — EI(N) — P. Since P has finite limits and I is finitely gen-

erated we have that the limit [ ¢ m P of the diagram exists in P. It is clear
(beNP)elI

that N(L i m P) = 1l i m NP. We have (b)ycnp)er € L2 m NP. Then

Genpm et GbenNP el GbenP et
Il i m NP#0. Itfollowsthatl : m MP #0. But an elementin ¢ m MP de-
A m— ol or—— e ee———
(beNP)elI (beNP)eI (be NP) eI

termines a I'y : I — EI(M) such that the square above commutes. For every I € S
choose a I';. Given I € S, let 1(I) = {K € S|I C K}. It is clear that T(I) # 0.
Given I and I' in S, Let J be the subcategory of EI(N) generated by TUI'. Clearly
J e S, and {(I)NT(I") = 1(J). Let G be an ultrafilter on S such that for every I € S
we have that 7(I) € G. Consider the ultrapower MY, and define h : N — MY as
follows. Given b € NP consider the subcategory of El(/N) that consists of one object,
(b € NP), and its identity arrow. Let hP(b) = (I'y(b € NP))ret(senp). So, we have
a function hP : NP — MY9P. We have to show that h is natural. Let f: P — P’

in P, consider the diagram

NP—M’MQP

| e

' —— MY
NP WP M

Let b € NP, and let I be the subcategory of El(N) generated by (b € NP) -
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(Nf(b) € NP'). For every J € St we have that M f(T';(b € NP)) = I'1(Nf(b) €
NP’). Therefore the previous square commutes. O

The proof of the next lemma is easy

Lemma 1.23. Let (M,a),(N,b) € El(evp), the following two statements are equiv-
alent;

For every monomorphism Q@ — P, b€ NQ implies a € MQ

For every monomorphism r—1 in P/P, O(N,b)(r) = 1 implies O(M,b)(r) =1
O

Proof of theorem 1.21.- Suppose that for every monomorphism @ ~— P we have
that b € NQ implies a € M P, then, by lemma 1.22 there exist a filter (5,G) and
a homomorphism k : O(N,b) — ©O(M,a)’. This corresponds to a homomorphism
h: N — M9 such that AP(b) = 6P(a). O

1.6 Left exact categories and pretoposes

It is shown in [18] that given a small site (C,J) with C a left exact category and J
generated by a pretopology (in the sense of [8]) all of whose covering families are finite,
a small pretopos F(C,J) can be constructed such that the category Mod(F(C,J))
is equivalent to Sh(C,J). This is done by producing first a theory T (¢ sy such that
for any logical category R, R-models of (C,J) are “the same thing” as R models
of T(cs) (see 6.1.1 in [18]). From T(c.s) a logical category R(C,J) is constructed
together with a canonical model My : T'(¢ 5y — R(C,J) with the universal property
that for every logical category R, R models of T'¢ ) are “the same thing” as logical
functors from R(C,J) to R, the passage given by M. Finally R(C, J) is completed
to a pretopos F(C,J) and a logical functor Ny : R(C,J) — F(C,J) with the
universal property that for every pretopos P, logical functors from R(C,J) to P are
in correspondence with elementary functors from F(C,J) to P. In particular, when
J is generated by the pretopology whose covering families are singletons containing
isomorphisms a P model of (C,J) is simply a left exact functor from C to P.
Then the construction described above gives a left exact functor Fy : C — F(C,J)
with the universal property that composition with Fy induces an equivalence from
Modp(F(C,J)) to Lex(C, P) for any pretopos P. We have a forgetful functor
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U : Pretop — Lez. The discussion above gives a small pretopos F(C) for every
left exact category C together with a universal functor Fo: C — F(C). This clearly
produces a left adjoint for U. F(C) turns out to be the category (Set®” ) (see
9.2.5 in [18]). What we do in this section is to give a combinatorial description of
F(C) using only C.

1.6.1 Coherent objects of Set€”

Start then with a small left exact category C.

Lemma 1.24. A functor F : C? — Set is a compact object in Set®” if and only if
it is finitely generated (that is, there exist objects Cy,..,Cp in € and an epimorphism
41 C (-, Cr) = F)

Proof. Suppose F' is compact. For every z € FC consider 1(zerc) : C(,C) = F
such that 7zerc)C(lg) = 2. Then the family {C(_,C)M)—’F}zch is an

epimorphic family. Since F' is compact there exist z; € FCi,..,z, € FC, such

that {C|(., CQMF}L] is an epimorphic family. This clearly means that
(Terercy)) : LIk C (-, Ck) —= F is an epimorphism.

Assume now that we have an epimorphism (7x) : [Tz, C(-, Cx)—= F and an

epimorphic family {Ga-—fa—’F}a. Then for every k = 1,..,n there exists some
ap and zp € Ga,Ck such that fo,Ci(zk) = TCi(lc,). It follows that the family
{Ga o, F}?_, is an epimorphic family. O

Proposition 1.25. A functor F : C°" — Set is a coherent object if and only if there
is a coequalizer of the form

H C(_, DJ):: H C(_, Ck)'—» F
1=1 k=1

in Set®” such that 117~ C(., D;) = =1 C(-, Ck) generates an equivalence relation

Proof. Let F' in (Setcop)coh. By Proposition 1.24 we can find an epimorphism

_ r
I, C(-, Ck)—ﬂl»F. Consider its kernel pair R::l 17—, C(-,Ck). Since R is

L
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compact (it is coherent by Theorem 1.1) there exists an epimorphism

ﬁ c(.py)-il g

i=1
This produces a coequalizer diagram

m n

H C(_, DJ): H C(_, Ck)—"> F.

Jj=1 k=1
with (r1,7;) the equivalence relation generated by the pair of arrows on the left in
the diagram above.

Conversely, assume [[72; C(-, D;) = Ilx= C(.,Cx) =~ F'is a coequalizer such that

™
the pair of arrows on the left generates an equivalence relation R— [}, G- L)

T2
Since [1j-, C(-, D;) and [T, C(-, Cy) are coherent and images in (Set®”) .1 are cal-
culated as in Set®” we conclude that R is coherent. Since (ry,7;) is an equivalence

relation with coequalizer F it follows that F' is coherent. a

Remark 1.1. Without the equivalence relation condition in Proposition 1.25 we would
simply have that F is finitely presentable. So being coherent is a stronger condition

on a functor F that being finitely presentable.

1.6.2 Free Pretopos Generated By a Left Exact Category

Considering the previous section, the idea to construct the pretopos from C is to

characterize the pairs of arrows of the form
Il et by == I (. Cy)
g9=1 k=1
that generate equivalence relations (that is, that the image of
[T c D) — (1T S Cx) x (LT C(- Ci))

j:l k=1 k=1

is an equivalence relation).
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Notice that an arrow [[7-, C(-, DJ-)—V— [Ir_; C(-, Ck) is a j-family of arrows

=

{C(., D;) - H C(-, Ck) iz

k=1

and that this in turn corresponds to a family of arrows {D; i Ck, }7L,. Thatisy =
(C(, f;));. Or put another way, there exists a function f : {1,2,..,m} — {1,.,n}

and a family of arrows {f; : D; — Cy(;)}J; such that for every ; the diagram

cl.f;

C(sDy) (i) C(-Csy)
i lif(j)

72, C(- Dj) —— i €5 Cx)

commutes. Let’s start with two functions {1,..,m} —{l,..,n} and two families of

arrows {f; : D; = Cy(;)}ie; and {g; : Dj — Cy(j)}iL; in C, and assume that

e (is)o C(L, f3)) =»
| C(..C,
=1 (2q(j) © C(-,95) I];]; e

generates a reflexive relation. Consider then the epi-mono factorization

1, (., 0y) “EE L CLtl 11 o0 < I, €, 6

/3\* 42)

We are supposing then that (ry,7;) is a reflexive relation. Then there exists an arrow
7 :[1C(-,Ck) — R such that the diagram

R

A
[Ii=; C(-, C) k=1 C (-, Ck) x 3= C(-,Ck)

T\‘ 42>

R

commutes. Since [ is epi we can find a function r : {1,..,n} — {1,..,m} and a family

of arrows {Ckﬂi D, (xy}#=, such that for every k, BCk(rx) = 7Ci(1¢,). This implies
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that for every k, fryrsx = lc, = gr(iTk- It follows that fr =14 my = gr and that

the diagram

n O, O) < [Ty O Ch) —Le 12, €( ;)

(C(-95))

k=1 C(- Ck)

commutes. The existence of a commutative diagram as above implies that the gen-
erated relation is reflexive. We will have to take care of symmetry and transitivity in
the same way, and show that they work in any pretopos.

For the formal construction that follows we are going to use the concept of limit
sketch, for which we refer the reader to [16].

Let S be the limit sketch S = (G, D, L), where G is the graph

Do

o=
==

o

Po1 g

el 1 ) 1 1—2 .9
S IV A N 4
o—t’1 0 by 1 1
S

—f—’ l—g—-*O

and L only has the cone

2
Po1 l
1
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We are going to consider models of the sketch S in Set;. Given a model @ :
S — Set, we are thinking of ®(0) as the set {1,..,n} and ®(1) as the set {1,..,m}
in the discussion above, and f,g and r as the functions with the same names as
above. The introduction of the pullback ®(2) is necessary for transitivity. The names
in the graph G are not accidental, r relates to reflexivity, s to symmetry and ¢ to
transitivity. Notice that the diagrams in D that have r in them represent the condition
on the indexing sets that we found necessary on the discussion above for the generated
relation to be reflexive.

For every model ® : § — Set; we can construct a new limit sketch S =
(Go, D, La) as follows. The graph G has as set of nodes the set ®(0) [T ®(1) [T ®(2).
To make the notation easier we are going to denote the elements of ®(0) by the vari-
able z, possibly with subindexes, the elements of ®(1) by the variable y again with
possible subindexes and the elements of ®(2) as pairs (y1,y2). We have the following

arrows 1n Go

y—f>fI)f(y for every y € ®(1).

)
y—g><1>g(y) for every y € ®(1).

r

(
(1)
r— ®r(z) for every z € ®(0).
y—S><I>3(y) for every y € ®(1).
(yuyz)i"bt(yuyz) for every (y1,¥2) € ®(2).
(y1,92) 22 ®(y1,y2) = y1 for every (v1,32) € ©(2).

(1, 42) 2 Bp1a(ys, 42) = 2 for every (v1,32) € @(2).
Notice that we have given the same name to many different arrows, if y; # y»

then ((y; L. ®f(y1)) # (v2 I, ® f(y2)) so it will be necessary to specify domain and
codomain when confusion may arise.

Dg mirrors D in the following way. For every z € ®(0),y € ®(1) and (y1,2) €
®(2)) the following diagrams are in Dg.

z -~ or(z) 1+ ®r(zx y_chf(y)

JAT T AT AT

T s(y)
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(y1, y2) —— ®t(y1,12) (y1,y2) — 21
Po1 lf tl lg
Y1 7 ®f(y1) Ot (y1,92) —3 ®g(y2)
and for every (y1,y2) € ®(2), Lg has the cone
P12

{41 Yo} =13

S

Y1 5 ® f(y1)

Given a left exact category C we are going to consider models I' : Sp — C. We
will denote I'(z) by T, similarly I'(y) by 'y and ['(y1,y2) by Ty,
When we have a pretopos P instead of just a left exact category and a model

[ : S¢ — P we can induce arrows 2, : [[,eo) Iy = Lzea) = such that the

diagrams
rf
T Los(y) Ty Ly Lag(y)
Uy 1 { Lo f(y) 2y ' Lag(y)
(1.2) Hyea) Iy Hzeao) 'z Hyea) Ty Hzea(o I's

commute. Then we can consider the relation generated by (¢,%), that is, the image

¥
<¢ > HrE@(O) Iz x HIEQ(O) Ly

e\~R‘4;2>

Proposition 1.26. Given a pretopos P, a model ® : S — Sety and a model T' :

HyEd>(1) Fu

S¢ — P, induce ©,¥ : [yean) Ty = Uzes(o) [z as above. The relation generated by

(p,1) is an equivalence relation.

Proof. Induce p : [I;eq(0) [z — Uyes) I'y such that for every z € ®(0) the diagram

Fz F7‘

11<I>r(1:)
i Lor(2)

Heeo(o) 'z — Hyeoy I'y
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commutes. Since the diagrams

F‘Pr(z 1—‘.1: ——FL_’ F<<I>r(1:)

\ /Ff 1&\ ,/Fg
I,

commute we have that pp = IHI@(O) r, = ¥p. it follows from Lemma 1.12 that the
generated relation is reflexive.

Similarly induce ¢ : [I,eom [y — [I,eo() [y such that for every y € ®(1) the
diagram

I1y Ls F¢s(r)

y tos(y)

Hye<1>(1) Iy 0 I_Iye¢(1) I,

commutes. It is easy to show that the diagram

]—[yE<1>(l) Fy

UIEQ F R I_Iy€¢' F _’ Hr =d(0

commutes. Then by Lemma 1.13 the generated relation is symmetric.
For z € ®(0) denote by ®(2), the set {(y1,y2) € ®L(: 2)|®f(y2) = z}. By Lemma

1.10 we have that

(1, 'p1:

I-I(yl W2)€ER(2)z mez —yz‘—u)" ]_Iyed)f‘l(r) Fy

(13, Tpo1) (Lf)
I—Iye%“(x) Fy (Fg) I's

is a pullback. It follows by Lemma 1.11 that
(iyz Fpn)

H(yl 92)€2(2) Lyiv ]_Iye(p(l) I,
(i, Cpor) l (Tf)
HUE‘I’(]) Ly Uzeb(o) Is

(Tg)



32
is a pullback. So induce 7 : [y, yp)ea(2) vz = Uyea) Ty such that the diagram
Ty, xp Ty, = Lot(y100)

i(UlvU?) iq’t(yl ¥2)
Uy wered@) T Hyear) Ty
commutes for every (y1,y2) € ®(2). It is easy to see that the diagram
(13, T'P12) 2y, ['Po
yea(1) Iy = H(yl ¥2)€2(2) Lyip, iy 1 Hyeoq) Ty
(o lT ®
H.—cetb(o) Fr 1»/) Hyedf‘(l) Fy © HrEQ(O) Fz
commutes. Then by Lemma 1.14 the generated relation is transitive. O

Now, for a left exact category C the objects of F(C) are pairs of models

(52 Seto, So S,

We are thinking that the pair (®,I") represents the quotient of the equivalence relation
(iosw ')

<i¢g(y) ng

asking for finite limits in C.

generated by [T,co1) I'y [:ea(0) [z, but this is not in C since we are only

Now, for the arrows in F(C) we need to retain only the information given by
f and g. To do this we consider the graph H = 1 —=0 and regard it as a limit

sketch where the set of commutative diagrams and the set of limit diagrams are
both empty. That is, we consider the sketch 7 = (H,0,0). We have an obvious
sketch arrow i : 7 — S. We are also going to use the sketch Z = (1,0,0) and

the sketch morphisms I:l:'T. Given a model ® : S — Set, we can define the

graph Hg whose set of nodes is ®(1)[] ®(0) and with arrows f:y— &f(y) and
g:y— ®g(y) for every y € ®(1). Then let Tp = (Ho, 0,0). In the same fashion let
Too = (Hgo,0,0) and Zo1 = (He1,0,0) where Hgo is the discrete graph with nodes
®(0) and Hg, is the discrete graph with nodes ®(1). We have the obvious sketch

arrows To — So,Zoo — To and Ze1 — To.
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Given models ®, ¥ : § — Sety, an arrow h : &1 — Wi of models induces an

obvious h : Te — Ty. Suppose we have two pairs of models (S—’SBto,Sq;—F’C)

and (S — Sety, Sy | C) and a pair of arrows of models

T L S Ts Se
\F
i V ) h o C
i /A

Let’s take a closer look at what these arrows are. h is a pair of functions making the

diagram ®(f)
hO(l) Bk CD(OZI

v(f)
U(1) 0 U (0)

sequentially commutative. Then o gives an arrow oz : I'; — Apo(z) in C for every
z € ®(0) and an arrow oy : I'y = Apyy) in C for every y € ®(1) in such a way that
the diagram

I' r
? Iy / Cas(y)

oc®g(y) oy ac®f(y)
Agg(h1(y)) T Apiy) AR Ao f(r1(y)

l—‘<I>g(y)

commutes for all y € ®(1). What this represents in our informal discussion is a

sequentially commutative diagram

Hey Ty Hao) =
(th1(4)0Y) (iho(z)0T)
Hya) Ay Hy(1y Ao

that would induce an arrow between the coequalizers. There is, of course, no unique
way to induce arrows between coequalizers so we will need equivalence classes. The

definition is as follows.
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Given a left exact category C let F(C) be the category whose objects are pairs

of models (S—(I)>Set0, So —F—C) A morphism

(e Bty S e L) = (S—X Seto, 5S¢ -2.C)

is an equivalence class [(k,o)] such that (h,o) are as in 1.3. The equivalence relation

is defined as follows, (h,o) ~ (k,7) if there exist morphisms of models d and ¢

0

L——=8 Zgo Se
N
1 i) d 5L C
& /A
(14) S \I/ Seto Iq;l = S‘.p

such that the following diagrams

w(0) 20 ¢(0) —22. w(0) By « T8 T ~T8e A
(1.5) v(1) Qd(a)

commute. We show that ~ is an equivalence relation. Given (h,o) define d =

(®(0) i v(0) = V(1)) and for every € ®(0) define éx as the composition

ozr Ar

e Apo(z) = Dar(ho(z))-

With these definitions it is clear that (h,o) ~ (h,o). Suppose now that (h,o) ~

(k,7), then there exist d and § with the corresponding properties above. Define

d
d= ((D(O)—-’\IJ(I)-\IJ—S~ ¥(1)), and é§'(z € ®(0)) as the composition

oz As
To—— & go)— Dasihiniz))-

It is not hard to see that d’ and &' satisfy the conditions for (k,7) ~ (h,o). Suppose
now that (h,o) ~ (k,7) and (k,7) ~ (,0), with d and § guaranteeing the first
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equivalence and d', §' the second. Then there exists a unique arrow ®(0) — ¥(2) that

makes the diagram

dl
®(0)
d ™y g
Wpa | vy
w(1) K7 v (0)
commute. For every z € ®(0) there exists a unique arrow I'; = Ag)a(z) that makes
the diagram i
I'z \
\ .
5. Ade)a(2) P2 Ay
z
Apor Af
*> A fif A !z
d(z) Ag ¥ fd'(z)
Ut

commute. Define d’ = (®(0) — ¥(2) —— ¥(1)), and for every z € ®(0), define 6"
as the composition

At
I's = Ade)arz) — Awi(d(z)d'(z))-

It is easy then to show that (h,o) ~ (1,0).

Composition in F(C) is defined as follows. Given

S (0] BB (T [
its composition is simply [(kh,7c)]. It is not hard to prove that the composition is
well defined. It is clearly associative and the identity morphism of (®,T) is [(1,1)].
If P is a pretopos we know from Proposition 1.26 that for any object (S i Set,,
S¢—F~P) in F'P we obtain a pair of arrows (see 1.2) [Ip() Fy::.’ () Iz whose
generated relation is an equivalence relation. This in particular means that the pair

. ¥ .
of arrows has a coequalizer [J¢(1) 'y :w.’ o) = Ly (the quotient of the generated
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~

equivalence relation). Given a pair (h, o) as in 1.3 we obtain a commutative diagram
.

Hea) Ty ” He@) I

(lm )ay) (ZhO(x)UI> §t(h o)

@’ 2"
Hya) Ay o) Az e U

-

therefore we can induce t(, ,) above making the diagram commutative.
Proposition 1.27. With the above notation, if (h,o) ~ (k,7) then t(h,) =tk

Proof. Let d and & be as in 1.4 such that the corresponding diagrams commute

. .  d(z)0- .
making (h,o) >~ (k,7). Consider the arrow [[g() Frﬂ—)—xl [y Ay Using the
commutativity of 1.5 we have that the diagram

(iko(I)TI>

1h0(2)O L
(o) Aar s wa—l o) Asr

Huq) Ay

commutes. Since u coequalizes (¢’,1’) it follows that

Zh JI>

T
3(0) <‘k0(z)”3} ¥ (0)

commutes. Therefore [[4(o) [': — U
done. O

U’ also commutes. Since u is epi we are

t(k,7)

Proposition 1.28. For any small left ezact category C the category FC is equivalent
to the category (Setcop)coh.

Proof. Define G : FC — (SetCOP)COh such that any object (®,T') in FC the
diagram
<2¢f(y)c

H C(- C(- —G(9,T)
®(1) (1091 C (-, Fg) !(%
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is a coequalizer. The coequalizer exists as a consequence of Proposition 1.26. Given

[(h,0)]: (®,T) — (¥,A) define G([(h,o)]) as the induced arrow such, that

) C(-T)
(ino(e) (St )eon (- C (-, 02))) G(((h, o))
) C(- Axr) G(¥,A)

G(®,T)

commutes. It follows from Proposition 1.5 that G[(h, )] is well defined.
In the other direction define H : (Set®”)., — FC as follows. For every K
in (Set®” )., choose a finite set ®(0), an object T for every z € ®(0) and an
™
epimorphism [I4(0) C(, Iz) —= K. Consider R—< [lg(o) C(.,T.), kernel pair of
1)
this epimorphism. Since R is compact we can choose a finite set ®(1), an object Iy
in C for every y € ®(1) and an epimorphism [[41) C(-,I'y) — R. We obtain then

a pair of arrows
@
II ¢ 1) == [] C(-T2)
®(1) d 0)

whose generated relation is the equivalence relation (ry,7;). We can then find func-

tions @ f,®g : ®(1) — ®(0) and arrows I’W(y)*ﬁf‘yﬂrw(y) for every y € (1)

such that the diagrams

C(,Ty) —2— s C(- T)) C(-.Ty) —2— Loy C(= )
CLTS) |4 (., Ty) "
C(-, F<I>f(y))7(E)> Ha@ C(-T2) Ci; F¢g(y))m @) C(- )

commute. Since (ry,r;) is reflexive and ;) C(-,I'y) — R epimorphic we can
choose a function ®r : ®(0) — ®(1) and arrows I'r : C; — Dgr(;) such that the

diagrams
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commute

Similarly, using symmetry and transitivity we can define the rest of the elements
necessary to obtain an object (®,I') of FC. Define then H(K) = (®,I'). Given an ar-
row i : K — K'in (Set®” ) op, assume H(K') = (¥, A). Since [[y(0) C(-, Azr) — K’
is epimorphic there exists a map K — [y(o) C(-, &) such that

K K’

m
NS
Hyo) C(-Az)

commutes. This induces an arrow

H C(-v Fz)-—’ H C(—-Az")'

®(0) ¥(0)

Therefore we can find a function k0 : ®(0) — ¥(0) and arrows oz : I'; — Ayg(y) for

every z € ®(0) such that the diagram

Lho(z) O
He@) C(-T2) M’ e C(- Ax)
K i K’

commutes. There exists then an arrow R — R’ such that the diagram

R

Hae@) C(-Tz)

R ————— (o) C(- Ax)

is sequentially commutative. Since [[y(;) C(-,Ay)—> R is an epimorphism we can
find an arrow [[¢) C(-,Ty) = Ly) C (-, Ay) such that the diagram

Hd)(l) C(-7 r‘y) —— H\Il(l) C(_, Ay’)

R R
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commutes. This gives a function k1 : ®(1) — ¥(1) and arrows oy : [y = Apiqy) for

every y € ®(1) such that

c.r,) L)

(-a Ahl(y))
iy ihl(y)

H‘b(l) C(_, Fy) = U\I’(l) C(—’ Ay’)

commutes. It is easy to show that h and o as defined above are arrows of sketches
as in 1.3. Define H(p) = [(h,o)]. It is not hard to see that if we change the choices
made above to produce (h,c) we obtain an equivalent pair. G is the pseudo-inverse

of H O



Chapter 2

Ultracategories

The concepts of pre-ultracategory, ultramorphism, ultracategory and Makkai’s theo-
rem (Theorem 2.3) all are taken from [15].

Given a pretopos P we want to consider the category Mod(P) of models of P.
Mod(P) has filtered colimits (and they are calculated pointwise) but in general we
can not guarantee the existence of any other kind of colimits. The situation for
limits in Mod(P) is even worse. However, Mod(P) has ultraproducts and they are
pointwise. That is, given an ultrafilter (/,U) (a set I with an ultrafilter 2 on I) we
have that for every family (M;); of models of P the ultraproduct bm JIM;isa

JeuUeJ

model of P, where the products and the filtered colimit are taken in Setf. So we
have a functor [U] : (Mod(P))! — Mod(P) that assigns to any I-family of models

its ultraproduct. Pre-ultracategories are an attempt to capture this situation.

2.1 Pre-Ultracategories

Definition 2.1. A pre-ultracategory A consists of a category A together with a
functor [U]4 : AT — A for every ultrafilter (/,4). We refer to the functor [U]4 as
the ultraproduct functor associated to & in A.

Given pre-ultracategories A and B, a pre-ultrafunctor F': A — B is a functor

40
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F: A — B together with a natural isomorphism [, F]

, Ua
A A
FI [, E/ F
& e P

for every ultrafilter (/,U). Pre-ultrafunctors compose in the obvious way.
Given pre-ultrafunctors FG:A— B, a pre-ultranatural transformation 7 :

F — @ is a natural transformation 7 : F — G : A — B such that

T[U]a

FolUd]a GolUa
U, F U,G|
U)po F! W Upo G’

commutes. Pre-ultranatural transformations also compose in the obvious way.
Let PUC denote the 2-category of pre-ultracategories, pre-ultrafunctors and pre-

ultranatural transformations whose underlying categories are categories in the second

universe.

Whenever we have a pre-ultracategory A, an ultrafilter (/,U) and a family (Ai);
in A’ we denote [U]a (A;) by I1; Ai/U or sometimes by [T A;/U. Similarly, if (f;) is
a morphism in AT we have [U]4 (fi) =TI fi/U.

If P is a pretopos then Mod(P) is clearly a pre-ultracategory Mod(P) with the
usual ultraproduct functors. In particular we can consider the pre-ultracategory Set

of sets together with the usual ultraproduct functors.

2.2 Ultragraphs and Ultramorphisms

The ultraproduct defined above for models is a combination of limits and colimits,
therefore we are in very short supply of canonical maps in or out of an ultraproduct

(as oppose to an honest limit or colimit). Here is where ultramorphisms try to fix this
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lack. But before considering the concept of ultramorphism we need the concept of
ultragraphs. Ultragraphs are to ultraproducts what limit sketches are to limits. That
is, in an ultragraph we want to specify nodes that will represent the ultraproduct of
other nodes (the same way as we want some nodes in a limit sketch to represent the

limit of some other nodes).

Definition 2.2. An ultragraph G is a graph G together with a partition G/ UG" of
the nodes of G and such that for every 3 € G® we have assigned a triple (I5,Us, g3)
where (Is,Up) is an ultrafilter and gs : I3 — G” is a function. The nodes in G' are

called free nodes and the nodes in G* are called bound nodes.

Then an ultradiagram is the equivalent of a model of a limit sketch. That is, an
ultradiagram is a diagram that assigns to a bound node an ultraproduct of the images

of the nodes associated with the bound node.

Definition 2.3. Given a pre-ultracategory A and an ultragraph G, an ultradiagram

D :G — A is adiagram D : G — A together with an isomorphism

D(8)~2—I1,, D(gs(:))/Us

for every 3 € G*.
Given ultradiagrams D,D' : G — A a morphism ¢ : D — D’ is a natural

transformation o : D — D’ between diagrams such that the square

D(B) — %+ T, D(gs(s))/ts
- [ M1, o(9s(i))/Us
D(8) —— W, D/(os() 2k

commutes for every § € G°. Morphisms between ultradiagrams compose in the

obvious way, so we have a category UD(G, A).

If we have a pre-ultrafunctor F' : A — B and an ultragraph G then it is not
hard to see that F induces a functor UD(G,F) : UD(G,A) — UD(G,B) by

composition.
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Given a node k in G we define the functor evy : UD(G,A) — A as evaluation
at k, that is evg(D) = D(k) and evi(g) = ok for every o : D — D' in UD(G, A).

We have the following corollary of Los’ theorem 1.4

Corollary 2.1. For any ultragraph G the category U D(G, Set) is a pretopos and
the forgetful functor UD(G, Set) — Set€ is elementary. d

We are ready now for the definition of ultramorphism.

Definition 2.4. Given a pre-ultracategory A, an ultragraph G and nodes k and ! in
G an ultramorphism § of type (G, k,l) on A is a natural transformation ¢ : evy —
evi:UD(G,A) — A.

An example of an ultramorphism on Set is the following. Let (I,U) be an ultra-
filter and f : I — J be a function. Consider the ultrafilter V = {Jo C J|f™'Jo € U}
on J. Define the ultragraph G as follows. G* = {8,7} and G/ = J. There are no
arrows in G. Define (Ig,Up,g93) = (I,U,f: I — J) and (L,, Uy, g,) = (J,V,1d;). We
want to induce a natural transformation 6 : ev., — evg. Given a family (A;); of sets

let 6(A;)s : T1A;/V — I1As(i)/U be the unique map that makes the diagram

et Ai “h . [14;/V

Wf(/

Ag) 6(Aj)u
4

Mics-10 Asy — TTA;()/U

Zf—lJO

commute for every Jy € V. It is not hard to show that § defined this way is a natural

transformation ¢ : ev, — evg. That is, § is an ultramorphism. As a particular case

observe that when J = 1 we obtain the diagonal function A — A for every set A.
Denote by ASet the set of all the ultramorphisms on Set. This makes ASet a

set in our second universe.
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2.3 Ultracategories

Definition 2.5. An ultracategory A consists of a pre-ultracategory A together with
an ultramorphism é4 : evy — ey : UD(G,A) — A for every ¢ : evy — ev; :
UD(G, Set) — M_in ASet.

Given ultracategories A and B an ultrafunctor £/ : A — B is a pre-ultrafunctor
F : A — B such that Fé_é = 5£UD(Q,E).

Given ultrafunctors £,G : A — B an ultranatural transformation g : F — G is

I

simply a pre-ultranatural transformation ¢ : F — G.

Ultrafunctors and ultranatural transformations compose in the obvious way and
we have a 2-category UC whose objects are ultracategories whose underlying pre-
ultracategories belong to PUC, ultrafunctors as 1-cells and ultranatural transforma-
tions as 2-cells. We have a locally full forgetful functor UC — PUC. When there is
no risk of confusion we will omit the corresponding underlining for pre-ultracategories
and ultracategories, the context should make clear which one we mean.

If P is a pretopos we can give the pre-ultracategory Mod(P) an ultracategory
structure as follows. First notice that for every ultragraph G and every P € P we
can define the functor UD(G, Mod(P)) — UD(G, Set) such that D — D(_)(P)
and o +— o(_)(P) for any o : D — D' in UD(G, Mod(P)) where of course we have
that D(_)(P)(k) = D(k)(P) for any node k € G. Given an ultramorphism 6 : evy —
ev; : UD(G, Set) — Set define dppq(p) : evix — evi : UD(G, Mod(P)) — Mod(P)
such that for every P € P (émoap)D)P = 6D(-)P. In this way we obtain the
ultracategory Mod(P) of models of P.

Proposition 2.2. For every ultracategory A the category UC(A, Set) is a pretopos.
Furthermore, the corresponding finite limits and colimits are calculated pointwise.

O

We finally arrive at the main theorem of [15], Makkai’s theorem. Let P be a
small pretopos. For every P € P we have that the functor evp : Mod(P) — Set
is an ultrafunctor evp : Mod(P) — Set. This fact allows us to define the functor
ev: P - UC(Mod(P),Set) such that P — evp. |



Theorem 2.3. Given a small pretopos P the functor ev: P — UC(Mod(P), Set)

is an equivalence.

Notice first that according to Lemma 1.15 it suffices to show that ev : P —
UC(Mod(P), Set) is subobject full, conservative and that every object in the cate-
gory UC(M:(ﬂ(P),&) has a finite cover via ev. We start with subobject full.

Assume first that we have an object P of P and a monomorphism 7 : F' — evp
in UC(Mod(P), Set) in which for every model M in Mod(P), M : FM — MP
is actual inclusion. Notice that in this case for every ultrafilter (/,4/) and any family
(M;)r in Mod(P)" the commutativity of the diagram

F(TT M JU) s Pl 1 FM; /U

T(lei/;\ ﬁTM,/U

1 M:P/U

implies that [U, F](M;) : F([1 M;/U) — T1 FM;/U is an identity. Let S = {Q—P
in P|FN C NQ for every N in Mod(P)} '-

Lemma 2.4. For every M in Mod(P), FM = (g p)es MQ

Proof. Let M € Mod(P). Clearly FM C (\g~spjes MQ. So suppose a €
N@—pr)es MQ. Define T = {(Q—P) in Pla ¢ MQ}. Cleartly SNT = 0, thus
for every (Q=—P) € T we can choose a model Ng in Mod(P) and an element
bg € FNg — Ng@Q. Observe that (0~—P) € 7 and if Q;—PF,Q2—P € T then
Q1V Qy—P € T. Given Q—P € T define [(@—P) = {Q'—PeT|Q—P <
Q' P as subobjects of P}. For any family {Q;— P}, of elements of 7 we have
Ny Qi — P) = 1(Viz; Qi— P). Therefore there exists an ultrafilter /{ on 7 such
that for every Q — P € 7 we have that T(Q—P) € U.

Consider (bg)1 € [17 NoP/U.

Let R~ P in P and assume that (bg) € [I7 NoR/U. We want to show that a €
MR. Suppose not, then R—P € T and T(R~—P) € U. Since (bg)r € [1+ NoP/U
there exists J € U such that for every @Q—P € J, bg € NgR. Since JNT(R—P) €
U we have that there exists (R'~—P) > (R>—P) such that bpr € NrR. Since
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Nr'R C Nr'R' we have brs € Ng/R'. This is a contradiction, so we can conclude that
a € MR.
We have showed that for every R~ P, (bg)r € [1r NoR/U implies a € MR.

Therefore by Theorem 1.21 there exist an ultrafilter (I,V) and an arrow

h: ] No/t — MY
T

in Mod(P) such that hP(bg) = 6P(a) where 6 : M — MYV is the diagonal. Since
(bg) € F([Iy Ng/U) we have that (a); = §P(a) = hP(bg) € F(MY) = (FM)Y.
Therefore there exists Iy € V such that for every i € Ip, a € M P. That is, a € M P.
O

Lemma 2.5. With the same notation as the previous lemma, there ezists R—PeS
such that F' = evg.

Proof. Suppose not. That is, assume that for every Q—P € S there exist a
model Mg in Mod(P) and an element ag € MoQ — F(Mg). Now, (lp: P—P) €S
and if Q;—P,Q;—P € S then Q1 A Qy—P € S. For every Q>—P € S define
HQ—P)={Q —PeS|(Q—P) < (Q—P)as subobjects of P}. We have that

» (U(Qi—P)) = (N, Qi—P). There exists then an ultrafilter W on S such
that for every Q— P € S we have [(Q—P) € W.

Consider {ag)s € [Is Mg P/W.

Let R~>P € S. We have that for every R'>—=P € [(R—P), ap € MpR C
Mg R. That is (ag) € [Is MgR/W. Therefore (ag) € N(r - P)es [Is MoR/W. So
according to the previous lemma we have that (ag) € F(Ils Mg /W) =Tls FMg/W.
This means that we can find (Q — P) € S such that ag € FMg. This is a contra-
diction. O

Consider now an arbitrary arrow o : G — evp in UC(Mod(P), Set). Consider

its image
G ag
evp

N,

H

Since images in UC(Mod(P), Set) are pointwise we may assume that for every M
in Mod(P), mM : HM — MP is really an inclusion . Then there exists R>— P
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such that H = evg. If 0 : G — evp is a monomorphism we obtain that e : G — H as
above is an isomorphism in UC(Mod(P), Set). We have proved

Proposition 2.6. If P is a small pretopos then the functor
ev: P —» UC(Mod(P), Set)

is subobject full. O

We turn our attention now to ev being conservative. Given a small pretopos P
we can consider the precanonical category J on P and form the category Sh(P,J).

Using Theorem 1.4 and Proposition 1.5 we can find I in Set and a surjection

f*
Set/I=—Sh(P,J).

*

Notice that we need P to be small to apply 1.4. We have then that the composi-
tion P-4~ Sh(P,J) S Set/I is elementary and conservative, where y is the usual

functor.

Proposition 2.7. If P is a small pretopos then ev : P — UC(Mod(P), Set) is

conservative.

Proof. Suppose we have two subobjects @) —P and R~—P of an object P in
P such that evg = evg in UC(Mod(P), Set). Take the functor P—y—Sh(P, J)—f—

Set/I defined above and define M; = (PL» Sh(P,J) S Set/I—Z:» Set) for every
i € 1. Then for every ¢ in I we have that M; is in Mod(P) and evgM; = evgM;.
Therefore ¢* f*y@ = :*f*y R for every : € I. Then clearly f*yQ = f*yR. since f*y is
conservative we conclude that (Q =~ P) = (R~— P) as subobjects of P. a
Now we turn our attention to the other part of the proof namely, that every object
F in UC(Mod(P), Set) has a finite cover via ev. Let M be a model in Mod(P)
and z € FM. If we are hoping to find a finite cover for F' via ev we should be

able to find an ultranatural transformation ® : evp — F for some P in P such that
r € Im(®M). That is to say, there exists a € M P such that ®M(a) = z. Notice
that if this happens then for any two arrows h,k : M — N in Mod(P) we have that
if hP(a) = kP(a) then Fh(z) = Fk(z).
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Definition 2.6. Given F': Mod(P) — Set, M in Mod(P) and P in P we say that
an element a € M P is a support for an element z € F'M if for every pair of arrows
h,k: M — N in Mod(P) we have that hP(a) = kP(a) implies that Fh(z) = Fk(z).
We say that £ € FM has a support if there exist an object P in P and an element
a € M P that is a support for z € FFM.

We will show that if a € M P is a support for x € FFM where F'is an ultrafunctor
then there exist a subobject QP in P with ¢ € M(@Q and an ultranatural trans-
formation @ : evg — F such that ®M(a) = z. Since we already know that every
subobject of evp in UC(Mod(P), Set) is of the form evg for some subobject @ of
P in P all we need is a monomorphism G — evp and a transformation ¥ : G — F

with z € ImWP M. Such a ¥ : G — F is called a partial P-cover of F' that contains z.

Lemma 2.8. An element x € FM has a support if and only if there exists a finite
family {(a; € P;)}7, such that for every pair of arrows h,k : M — N we have that
hP;(a;) = kPi(a;) for every i = 1,..,n implies that Fh(z) = Fk(z).

Proof. The only if part is clear. For the if part simply consider (ai,..,a,) €
i1 MP = M([Ti, P) O

Proposition 2.9. Given F in UC(Mod(P), Set), M in Mod(P) we have that

every r € FM has a support.

Proof. Suppose not. That is suppose that for every finite family d = {(a; € P)}X,
there exists a pair of arrows hg, ks : M — N; in Mod(P) such that hyPi(a;) =
kyP;(a;) for every i = 1,..,n but Fh(z) # Fk(z). Let D be the set of finite families
of the form d = {(a; € P;)}", ordered by containment. For every d in D chose
a pair of arrows hg,kg : M — N, satisfying the property written above. Denote
7(d) = {d' € D|d C d'}. Now, M1 =1 and therefore D is nonempty, and for every
d,d € D we have that T(d) N T(d") = T(dU d'). Therefore there exists an ultrafilter
U on D such that for every d € D we have T(d) € U. Consider the diagram

MMMM

[Ip ha/U
Ny /U
[Ip ka/U IDI o
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where § is the diagonal ultramorphism. Given a € M P consider d = {(a € MP)} €
D. Then for every d € 1(d) we have that hy P(a) = kg P(a), therefore we have that
(hg P(a))areta = (karP(a))arera in [Ip NaP/U. Therefore

th/u oM = de/u oM.
D D

Consider the following diagram

F(Ilp ha/U
F(MY) FEED kd;u) F(ITp Na/U)
F(§M) p Fa/t)
§EM\
Tlp Fhe/U
(FM¥ o ot [Ip FNa/U

The left triangle commutes because F' is an ultrafunctor and the right square clearly

commutes sequentially. Therefore both compositions in

y [1p Fha/U
par SEM. oy o F R g
are equal. We then have that (Fhy(z)) = (Fk4(z)) in [Ip FNa/U. Since we assumed
that Fhy(z) # Fkg(z) for every d € D we have a contradiction. O

For the next couple of propositions we use the notation from Proposition 1.20.

Lemma 2.10. Given F : Mod(P) — Set, P in P, z € FM and a € M P, we have
that a € MP is a support for z if and only if the only element of ©(M,a)(1) is a
support for z € Fo(—oAp)(O(M,a)) O

Proposition 2.11. Let F : Mod(P) — Set be an ultrafunctor, P be an object of
P, M in Mod(P), a € MP and z € FM. If there exist a subobject r=—1 in P[P
and an ultranatural transformation @ : ev, — F o(— o Ap) such that ©(M,a)(r) = 1
and © € Im®O(M,a) then there exists a subobject Q—P with a € MQ and an

ultranatural transformation V¥ : evg — F such that VM (a) =z

Proof. Consider a diagram
Q—"—P

1\ '/IP

P
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in P/P and assume we have an ultranatural transformation @ : ev, — F o (— o0 Ap)
satisfying the requirement of the proposition. By the definition of O it is clear that
a € MQ. Define ¥ : evg — F as follows. Given N in Mod(P) and b € NQ we have
O®O(N,b) : O(N,b)(r) — FN. Since b € NQ we have that ©(N,b)(r) = 1. Define
UN(b) = PO(N,b)(e) (where o is the only element of O(N,b)(r)). It is not hard to
see that ¥ is an ultranatural transformation and that ¥VQ(a) = z. O

The proposition above and the lemma preceding it tell us that when we have a
support a € MP for z € FFM it is enough to assume that P = 1 and that a is the
only element of M1. Now, ¢ € M1 is a support for z € FM if for every pair of

morphisms M_Z_, N in Mod(P) we have that Fh(z) = Fk(z)

If F: Mod(P) — Set is a pre-ultrafunctor consider the category Mod™(P) =
Mod(P)]] EIl(F), where EI(F) is the category of elemnts of F' with forgetful functor
El(F) — Mod(P). If M is an object of Mod(P) we denote it by (M, *) when we
see it as an object in Mod"(P), whereas an object (N, z) in El(F) is also denoted
by (N, z) when seen as an object of Mod™(P). We say that (N, z) is a proper object
if z # *, otherwise we say it is improper. We give Mod™(P) a pre-ultracategory
structure as follows. If (I,) is an ultrafilter and ((M;, z;)); is an I-family of objects
of Mod*(P), consider the set J = {z € I|z; # *}. Define

(ITM: /U, %) if J¢U
(ITM:/U, U, FIM) T (25)0)) ifJ el

[I(M;,2)/u = {

and if (fi) : (Mi, z;)) = ((Ni,y:)) is a morphism in Mod*(P)’ then (f;) — [T fi/U.
We have a forgetful preultrafunctor Mod™(P) — Mod(P) such that (M,z) — M.

If we carry out the construction above with id : Set — Set instead of F' we get
a pre-ultracategory that we denote by Set™.

The preultrafunctor F' : Mod(P) — Set induces a functor F* : Mod*(P) —
Set” such that F*(M,z) = (FM,z) and F*h = Fh for every h : (M,z) — (N,y) in
Mod*(P). F* turns into a pre-ultrafunctor if we define [U, F*]((M;, z;)) = [U, F|(M;)
for every (M, z;)) in Mod*(P)".

Lemma 2.12. Given a pre-ultrafunctor (ultrafunctor) F : Mod(P) — Set we have
that subobjects of F' in PUC(Mod(P), Set) (UC(Mod(P), Set)) are in one to one
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correspondence with classes C of objects of Mod™(P) that satisfy the conditions 0)-3)
below

0) For every M in Mod(P) we have (M,*) € C.

1) If (M,z) € C and f : (M,z) — (N,y) is a morphism in Mod™(P) then
(N,y) eC.

2) For any ultrafilter (I,U) and any object ((M;, z;)) in Mod™(P) with (M;,z;) €
C for every i € I we have that [[(M;,z;)/U € C.

3) If (I,U) is an ultrafilter and ((M;,z;)) is an object of Mod™(P)" such that
[T1(M;,z;)/U € C then there exists a set J € U such that for every j € J, (M;,z;) € C.

Proof. Start with a subobject G ~E—~ F. Define the class
Co = Mod(P)[I{(M,z) € EI(F)|z € ImuM}.

Clearly Cg satisfies 0). If (M, z) € Cg is proper and f : (M,z) — (N,y) in Mod™(P)
then, since z € I'm pM and the diagram

oM Loy

uM [ [,uN
P T
FM FT FN
commutes, we have that y € Im uN. If (M, z) is improper then (N,y) = (N, *) € Cq.
Therefore Cg satisfies 1). Let (I,U) be an ultrafilter and ((M;,z;)) be an object in
Mod*(P)". Let J = {i € I|lz; # %}. If J ¢ U then clearly [[(M;,z;)/U € Cq.
Assume then that J € Y. Then for every j € J we have that z; € Im uM;. Since p

is a pre-ultranatural transformation we have that the diagram

e i) 4G gy
u(ITM;/U) [TuM;/U
(2.1) FUIM) g pay” TTEM/U

commutes. Then it is clear that [U, F](M;)"'((z;)s) € Imu[l M;/U, that is Cq
satisfies 2). For 3) Assume that [J(M;,z;)/U € Cq. if J = {i € I|z; # *} ¢ U then
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for every i € I — J we have that (M;,z;) € Cq. Suppose then that J € 4. We have
that [U, FI(M;)~'((z;)s) € Imp(T] M;/U). We then can find an element (yx)x €
[1GM;/U such that u(I] M; JU)(U, GYUM) H((ye)k)) = U, F)(M;)~*((z;)s). This
means that ] pM;/U((yx)x) = (z;)s. Therefore there exists a set L C J N K with
L € U such that for every £ € L we have uM;(y,) = 4. That is for every £ € L we
have that (My, ;) € Cg so we have 3). It is easy to show that if the classes determined
by two subobjects of F' coincide then they are the same subobject.

Assume now that we have a class C of objects of Mod™(P) that satisfies 0)-3)
above. Define G¢ : Mod(P) — Set such that G¢(M) = {z € FM|(M,z) € C}.

If h: M — N is a morphism of models then condition 1) guarantees that F'i :
FM — FN restricts

Y Ly

GeM m GeN

With these definitions we have that G¢ is a subfunctor of F.

We want to define [U, G)(M;); : Ge(IT Mi/U) — T1GeM;/U such that the dia-
gram 2.1 commutes. Let z € Gc(I] M;/U). We have then that ([T M;/U,z) € C.
Let (z;); = [U, F}(M;)1(z). Then by 3) there exists K C J, K € U such that for
every k € K, (Mg, x;) € C. Therefore (z4)x € [1GcM;/U. Define [U,G(M;)(z) =
(zi)k. Since [U, F](M;) is an isomorphism it is easy to see that [/, G](M;) is mono.
Use 2) to show that [U,G](M;) is onto. This gives us a subobject G¢ of F in
PUC(Mod(P), Set). 1t is easy to see that the association C — Gc¢, G — Cq
between classes satisfying 0)-3) and subobjects of F' in PUC(Mod(P), Set) are in-
verses. It is not hard to see that if F is an ultrafunctor then G is also an ultrafunctor.
O

Assume now that the only element of Myl is a support for zo € F M. A diagram
of the form

Gr——ev;~1

®

g
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is the same thing as a subobject G—evy x F' ~ F that satisfies z,z’ € GM implies
r = z'. That is, we need a class C satisfying 0)-3) above plus

4) (M,z),(M,z') € C with z,2’ € FM implies that z = z'.

We also want the class C to satisfy

5) (Mo, zo) € C.

For the proof we will have to consider bigger and bigger small subcategories of the

category Mod*(P). Here is the definition of the small subcategories we will need.

Definition 2.7. Let P be a small pretopos and F' : Mod(P) — Set be an ultra-
functor. A pair (C,S) is called a small approximation of Mod™(P) provided that
i. C is a small subcategory of Mod"(P)

ii. S is a set of triples of the form (I,U, s Ob(C)) where (I,U) is an ultrafilter.

iii. For every (I,U,g) € S the ultraproduct [Jg(¢)/U is in C.

iv. For every ¢ : {0} — Ob(C) we have that ({0},Uo,g) € S where ({0},U) is
the only possible ultrafilter over {0}.

v. If (I,U,g) € S and ¢' : I = Ob(C) is such that

1-%: 0b(C) ~~ Mod"(P) 2~ Mod(P)
g

commutes then (I,U,g') € S.

Let x be the cardinality of P (that is k = #(Ar(P))). We say that a small
approximation (C,S) of Mod™(P) is closed if it satisfies

vi. For every M in Mod(P) such that #M := #(llpep MP) < & there exists
(N,*) € C such that #N < k and N ~ M.

vii. For every (M, %), (N, *) in C such than M = N (elementary equivalent) there
is an ultrafilter (I,U) such that (I,U,¢1),(I,U,g2) € S, with g1 : [ — Ob(C) is the
constant map with value (M,x), go : I — Ob(C) is the constant map with value
(N, ) and MY ~ N4.

Given a small approximation (C,S) of Mod*(P) a (C,S)-subobject of F'is a
family C C Ob(C) satisfying 0)-3) above when 2) and 3) are restricted to elements of
S.

A partial cover of F relative to (C,8) is a (C,S)-subobject of F' that satisfies 4).
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Remark 2.1. Given a pair (C,S) satisfying i-iii we can always find a pair (C’,8’)
satisfying i-v and such that C is a subcategory of C’ and § C &'

Remark 2.2. Given a small approximation (C,S) we can always find a small close
approximation (C’,8’) such that C is a subcategory of C' and S C &'. This is
a consequence of the Keisler-Shelah isomorphism theorem that says that given two
models M, N such that M = N there exists an ultrafilter (I,2{) such that M¥ ~ N¥.

We now show that for every small approximation (C,S) and any zo € F'M, with
support the unique element of Mol we can find a partial cover C of F'relative to (C,S)
such that C satisfies 5). We start by putting (Mo, o) in C. Notice that conditions
0)-2) can always be fulfilled by adding more and more objects to C, however condition
3) involves the choice of a set in an ultrafilter. We will make all the necessary choices
and repeat the process. In this way we can obtain a C that satisfies 0)-3) and 5) but
not necessarily 4). We will assume that for all possible choices we obtain a family
C that fails to fulfill 4) and we will get a contradiction. This process involves the
recursive construction of an ultragraph.

So let (C,S) be a small approximation of Mod™(P) and assume that e € Mol is
a support for 2o € FMy. Let £ = #C and ap = &*.

We construct the ultragraph G and the ultradiagram D : G — Mod™(P) as
follows.

For every (M,*) in C we put a node @p. We also put a node ¢o. Define

G{ = {0} U {pm|(M,%) is in C}

Gg =
No edges in Gy
Qo =10

Dy : Go — C is such that ¢o — (Mo, zo) and ppr — (M, *).
Let 0 < o < ag and suppose we have made the corresponding definitions for all
o' < a. Define

Géa = Ua'<a Gi’

Gb<a = Ua'<a Gl;'

Gco = Uarca Go

O<a = Ua'<a O

D<o = Uarca Do
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Let ©, be the set whose elements are of the form («, I,U, g; f; J,V, ¢') such that
L. (J,V,d') €S.
Il.g: I — Gia.

L (1u, 19~ 6L, P<e.c)es.

IV. Iy = {1 € I|D<4(g(2)) is proper} € U

V. f: 11 Dcag(2)/U — T14'(y)/V is a morphism in C.

Notice that condition IV implies that [] D<,g(z)/U is a proper object.

For every t = (a, I;,Us, gi; f1; Ji, Vi, g;) € O take two nodes 3,7 and for every
j € J; take a node (t, ). Define then

G: = {Bi|t € O} U {n|t € 0.}

G! = {(t,j)|t € O4 and j € J;}.

For every t € ©, put an edge r; : 3; — v: in G,.

Do(Bt) =TT D<age(t) /Ui
Da(y:) = 19:(5)/Ve.
Da(t,5) = g:(7)-

Dy(r) = f.

Finally define G = G,, and D = D.,,. We have that G is an ultragraph and
D is an ultradiagram. Notice as well that D factors through C.

Next we make formal the concept of possible choices of elements of ultrafilters for
the family to satisfy 3).

Let © be a subset of ©,,, and A= (At)tco be a O-indexed family of sets such
that A; € V, for every t € ©. We define recursively what it means for ¢t € 0, and v
node of G to be A-accessible.

First, g is A-accessible.

For every M, ¢ is not A-accessible.

Suppose we know what it means to be A-accessible for t € O, and v € G, for
0 < a < ag. Then

t € O, is A-accessible if and only if {i € I,|g:(i) is A-accessible} € U,.

By is A-accessible if and only if ¢ 1s A-accessible.

ve 18 A-accessible if and only if ¢ is A-accessible.

(t,7) is A-accessible if and only if ¢ is A-accessible, t € © and j € A,.
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We say that A = (At)e is regular if and only if for every t € ©., we have t € ©
if and only if ¢ is A-accessible. Define G(A) = {y € G|y is A-accessible}, and let
A = {/ﬂA‘ is regular}.

Notice that A is a meet semilattice. Given A = (At)e and B= (B;)er construct
C = (Ct)en recursively as follows. Suppose we know already what ©” N O, is and
that we have already defined C; for every t € ©” N ©,,. Then t € ©” N O, if and

only if t is (C; : t € ©" N O,)-accessible and define C; = A, N B, € V;. C = (Cy)on
is regular and C=AABin A

Lemma 2.13. Given an ultradiagram E : G — Set and a € E(pg) there is an
ultradiagram E* : G — Set” such that E*(¢o) = (E(ypo),a) and the diagram

Gt g
E\ '/U
Set

commutes, where U is the forgetful functor.

Proof. Define E*(¢o) = (E(p0),a) and E*(par) = (E(pa). *). Assume that E*(v)
has been defined for v € G,. Let t € O, define E*(5;) = [}, E(9:(?))/U;. Define
E*(y:) = (E(v),b) if b makes E(r;) a morphism E*(3;) — (E(7:),b) in Set”™ (notice
that there is a unique b with this property). Define E*(r;) = E(r;). Choose J € V,
and a; € E(t, ) for every j € J such that b = (a;);. Define E*(t,;) = (E(t,7),q;) if
jJ €J and E*(t,7) = (E(t,j),*)if 5 ¢ J O

Lemma 2.14. Given A regular the family C = {(M,*) € C} U{D()|y € G(A)}
satisfies conditions 0)-3) and 5), where D : G — Mod™(P) is the ultradiagram
defined above.

—

Proof. Clearly 0) is satisfied. Since po € G(A) and D(po) = (Mo, z0), C satisfies
5).

Assume (M, z) € C is proper. We show that there exists v € G/ N G(A) such
that D(y) = (M,z). If (M,z) = D(B,) with ¢t A-accessible, ¢ € ©,, a < ag then
{1 € Li]g:(2) is /i‘—accessible} € Uy. Let t' = (a, It,Uy, g5 1da; {0}, Uo, g') where ¢'(0) =
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(M,z). Then t' € O, t' is A-accessible and we have D(t',0) = (M,z). Clearly
(t',0) € G N G(A). The case D(y) = (M, z) is similar.

C satisfies 1): Let (M,z) = D(y) with v € G'n G(/i‘) and h: (M,z) — (N,y)
in C. Suppose v € G’;a with @ < ao. Let t = (o;{0},Uo,g;k; {0}, Uo,g') where
g(0) = v and ¢’(0) = (N,y). Then t € O,. Since v is A-accessible we have that ¢ is
A-accessible, this means that 3; and +, are also A-accessible. Clearly D(v;) = (N,y).
That is (N,y) € C.

C satisfies 2): Let (I,U,g) € S and with g(:) = (M;,z;) € C. If J = {1 € I|g(z) is
proper} ¢ U then clearly [1g(¢)/U € C. Assume then that J € U. For every j € J let
v; € Gil N G(A) such than (M;,z;) = D(v;). Assume furthermore that (M;,z;) =
(Mj, z;i) implies 7; = 7; for j,j' € J. Since the cardinality of {a;} < & there exists
a < ap = kt such that a; < a for every j € J. Let t = (o1, U, g;:d;{0},Uo,g")
where g(i) = v(1) if i € J, g(1) = oM, and ¢'(0) = [I1D(g(z))/U. Notice that
[1D(g(2))/U = T1(M;,z;)/U. Now, t € O, and for every j € J,v; is A-accessible,
therefore t and [3; are A-accessible. We have [T1(M;, z;) = D(B:)-

C satisfies 3): Let (M;,z;) in C for ¢ € I and assume [[(M;,x;)/U € C with
(I,U,((M;,z;))) € S. If [1(Mi,z:)/U € C is improper then the conclusion is clear,
so assume it is proper. Assume [J(M;, z;)/U € C = D(v) with v € G/ n G(A) and
a < ag. Let t = (a,{0},Uo, g;2d; I, U, (M;,x;))) € O, with g(0) = v. Since v is
A-accessible we have that t is A-accessible. Since A = (Ap)peo is regular we have
that t € ©. Then (¢,7) is A-accessible for every j € A, and D(t,j) = (M;,z;) for
J € A a

Lemma 2.15. Given an ultrafunctor F : Mod(P) — Set,(C,S) a small approz-
imation of Mod™(P) and xo € F M, with support the only element of Mol. There
ezists a partial cover C of F relative to (C,S) such that (Mo, o) € C.

Proof. Consider the ultradiagram D : G — Mod*(P) defined above. We have
seen that for A regular the family Cz = {(M,*)|(M,*) in C}U{D(7)|y € G(A)}
satisfies 0)-3) and 5). If for some regular A the family C ; also satisfies 4) we are done.
So let’s assume that for every A € A = {B|B is regular } the family C; does not
satisfy 4). Then for every A € A we can find nodes 71(/{),72(/-1‘) € G’ N G(A) such
that D(y:(A)) = (Mz,z ) and D(y2(A)) = (Mz,z z,) are proper and 5 # T z,.
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71(,4‘), '72(/1‘) can be chosen in GfﬂG(f_l‘) as a consequence of the proof of the previous
lemma). We know that A is a meet semilattice, so there exists an ultrafilter W on
A such that for every A € A, |(A) € W. We construct a new ultragraph G as
follows. G, is obtained from G by adding a new bound node ¢ and assigning to it
the triple (A, W, g) where g(fi‘) = 71(/?). We define an ultramorphism 6é; : evy,, —
eve : UD(G, Set) — Set as follows. Given an ultradiagram E : G; — Set consider
the ultradiagram E' = E|g : G — Set and notice that E’ essentially determines
E. We can assume E({) = HE’('yl(/i‘))/W. Let a € E(po), construct E' : G —
Set® as in lemma 2.13. If E"(11(A)) = (E('yl),al(/?)) define 6, E(a) = (a1(A))4 in
1 E(71(A))/W. 1t is not hard to see that 6; E(a) # *, that it does not depend on the
choice of E”* and that é; defines an ultramorphism.

Similarly, using 72(ﬁ) instead of 71(14‘) we obtain an ultragraph G, and an ultra-
morphism & : ev,, — ev, : UD(G,, Set) — Set.

Consider the ultradiagram G”Q> c iR Mod(P) where D was defined above and

U is the forgetful functor. We can extend DU to ultradiagrams
D, : Gy — Mod(P) D, : Gy — Mod(P)

such that Dy(£) = Dy(f) = [IM;/W and Di|g = Dz|le = DU. Since é, 6; are ultra-
morphisms over Set we have the corresponding ultramorphisms &1, 85 over Mod(P).

We obtain a pair of homomorphisms

~

61D,
D1(¢0) = Da(w0) = Mo——= [ Mz/W = D:i(¢) = D:({)
52D2
Applying F' we have ~
F(61Dn)

=

F(6,D,)

F JW 0

F(IIMz/W)

Since z¢ € F'M, has support @ € Myl we have
(2.2) F(6,D1)(zo) = F(6:D,)(z0).

We show that [W, F](M;)(F(&Dl)(zg)) = [(z 5;)]: Since F is an ultrafunctor we
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have that the diagram

FM, ——— F(‘S‘D) HMA/W

61FD\ /w F(

(I FMz/W)

commutes. So what we want to show is that 6 FDi(zo) = [(z4)].- According to
the definition of §; we need a lifting of FD;. Define D* : G; — Mod™(P) such
that D*|g = D and D*(¢) = (IIMz/W,[W, Fi(Mz)~'([(z z;)])). It is clear that the
diagram

—> Mod* ———> Set”

\/

commutes, where F*(M,z) = (FM,z). We conclude that & F D;(xo) = [(z z,)]-
Similarly we can show that 6;F Dy(z0) = [(z 5,)]. By the way we chose z 5, and
z 7, that [(z 4,)] # [(x z,)]. This is in contradiction with 2.2 O

Lemma 2.16. Let F : Mod(P) — Set be an ultrafunctor, (C,S) be a small closed
approzimation of Mod™(P) and C,D be two (C,S)-subobjects of F'. If for all (M, *)
in C with #M < k and ever € FM we have (M,z) € C if and only if (M,z) € D,
then C = D.

Proof. Let (N,*) be an object of C. Since (C,S) is a closed approximation
we can find (M,*) in C with #M < k and M = N together with an ultrafilter
(I,U) with the following properties. There is an isomorphism £ : MY — NY and
(I,U,q1),(I,U,g2) € S where g1,g2 : [ — Ob(C) are constant functions with values
(M, *) and (N, *) respectively. Consider the following diagram

(FM)4 (FN

§FM / NSFN

U, F1(M) [, FI(N) PN

F(éM)\\ o F(sN)

F(MY) F(NY)




60

where § denotes the diagonal. Notice that since F' is an ultrafunctor the above
diagram commutes.

Let y € FN. We show that (N,y) € C if and only if there exist J € U and an
(M, z;) € C for every j € J such that F(6N)(y) = Fh([U, FI(M)~ ([{z;)])).

Assume first that (N,y) € C. Since C is a (C,S)-subobject we have [T(N,y)/U €
C. Let z € F(M¥) such that Fh(z) = F(6N)(y). Then 7! : (NY F(6N)(y)) —
(MY, 2) is in C. Therefore (M¥,z) € C. Since C is a (C,S)-subobject we can find
a J € U and objects (M, ;) € C for every j € J such that [U, F](M) [(z;)] = =.
Now apply Fh. Conversely, assume that F(6N)(y) = Fh([U, F{(M)~([(z;)J])) for
some J € U and (M,z;) € C for every j € J. Then (MY [U, F}(M)~([(z,)4])) €
C. Since h : (MY, [U, F)(M)" ([(z;)s]))) — (N,F(6N)(y)) is in C we have that
(N,F(6N)(y)) € C. This means that (N,y) € C.

We clearly have the same result for D. Therefore C = D. a

Lemma 2.17. Let F : Mod(P) — Set be an ultrafunctor, My a model in Mod(P)
and xg € FMy. Assume that @ € Myl is a support for ro € F'My. Then there is a
diagram of the form

Gr——ev; ~1
®
(2.3) F
in UC(Mod(P), Set) such that zo € Im ®M,.

Proof. For every ordinal « give a small closed approximation (C,,S,) such that

-Ifa<pthen C, C Cpand S, C Sp.

- Ua Co = Mod™(P).

- Uq Sa is the set (in the second universe) of all the triples (I,U, g) with (I,U) an
ultrafilter and g : I — Ob(Mod"(P)).

It is not hard to see that such a sequence of small closed approximations exists.
Since (Cy,Sp) is a small close approximation we can find a small set A and a family
of models {M;}sep such that

- #M, < k for every ¢ € A.

- (My, *) is an object in Cy for every £ € A.
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- For every model M in Mod(P) with #M < « there is an £ € A such that
M ~ M,.

For every ordinal a let C, be a partial cover of F' relative to (Cq4,S,) with
(Mo, 2o) € Cq. For every ordinal a and every £ € A define Xor = {z € FM,|(M,,z) €
Cs}. Every a determines the family (Xa¢). Notice that since A is small and F is
fixed there is a small set of such families. It follows that there is a family (X;) such
that the set (in the second universe) = = {a|a is an ordinal and (Xae) = (Xz)} is
unbounded. If o, 8 € = with a < 3 then by lemma 2.16 we have that C, = C, N Cg,
that is, Ca C Cs. Define C = Uyez Co- By the remarks after the proof of lemma 2.12
C corresponds to a diagram of the form 2.3 above. O

By proposition 2.11 we have

Corollary 2.18. Let F : Mod(P) — Set be an ultrafunctor, My in Mod(P), zo €
FM,, P in P and a € MyP such that a is a support for zo. There is a diagram of
the form

G ——— evp

o

F
in UC(Mod(P), Set) such that a € GM and ®My(a) = xo. a

In a result similar to 2.16 we show that an ultranatural transformation is deter-

mined by its values at models of size at most x = #P

Lemma 2.19. [f®, ¥ : F — G : Mod(P) — Set are ultra-natural transformations
between ultrafunctors such that for every model M in Mod(P) of cardinality # M < &
we have @M = VM then & =¥

Proof. Let N be a model. Choose a model M of cardinality at most &, an ul-
trafilter (I,U) and an isomorphism h : MY — NY Let y € FN. Since h is an
isomorphism there exists z € F(MY) such that Fh(z) = F§N(y). Let J € U and
z; € FM for every j € J such that [U, F](M)(z) = [(z;),]. Since ® is an ultranatural
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transformation the diagram

F(MY) U, FIM) (FM¥
o(MY) L (@M

MU u

G(MY) RGN (GM)

commutes. It follows that o(M¥)(z) = U, G](M)'l[(QM(zj))]. Using the naturality
of ® applied to h we conclude that ®(NY)(FEN(y)) = Gh([b(,G](M)‘l[@M(xj))]).

Using the commutativity of

FN —E8N. p(NU)
®N O (NY)
GN G(N)

G6N

we have GEN(®N(y)) = Gh([U,G](M)‘l[(CI)M(a:j))]). The same reasoning shows
that GSN(YN(y)) = Gh([Ll,G]("\l)’l[(‘lu\f(xj))]). Since #M < £ we have that
®M(z;) = YM(x;) for every j € J. The result follows from this. a

Proposition 2.20. If P is a small pretopos, then every F in UC(Mod(P), Set)
has a finite cover via €v: P — UC(Mod(P), Set).

Proof, Since P is small there is a small set of ultrafunctors of the form evp
with P in P. According to Lemma 219 an ultrafunctor evp — F is determined
by its values on models of size at most K. From lemma 2.6 we know that evp :
P — UC(Mod(P), Set) is subobject full. It follow that there is a small set 7

of diagrams of the form F<2-G>——>evp such that for any diagram F<-q—)—G’>——>evp

; g ¢ ; ;
there is a diagram (F'+— G »—evp) € T and an isomorphism G — G’ such that the

diagram

F&G——*CW

N |

GI

commutes.
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For every model M in Mod(P) and x € FFM we know that there is a diagram of
the form (FJ); G —evp) with z € Im ®M. By what we said above we may assume

that (Fi Gr—evp) €T.
Let P,(7) denote the set of finite subsets of 7 ordered by inclusion. Assume

that for every 7' € 7, T = {F& Gi—evp }*, there are a model Mt and zr €
FMr such that z7 ¢ UL, ®;Mr. Let U be an ultrafilter on P,(7) such that for
every T € T we have that 1(T) € U. Consider [U, F](Mr)~'[(z7)] € F(IT1M1/U).

We can find (F-gGHe'vp) € T such that U, F|(Mr) ' [(zr) € Im O[] Mr/U.
This means that there is J € U such that for every T' € J, z7 € Im®Mp. If

T €7 {FgGHevp)} NJ € U then we have that z7 € Im ®Mz. On the other

hand, since (F<¢—G>—>evp) € T we have zr ¢ Im ®M7. A contradiction. There
exists then T' € P,(7) such that for every model M and every x € FM there is an

element (FiGr—)evp) € T with z € Im®M. T is then a finite cover of F via
ev: P — UC(Mod(P), Set). O

We have shown that for a small pretopos P the functor
ev: P — UC(Mod(P), Set)

is conservative (Proposition 2.7), subobject full (Proposition 2.6) and that every F
in UC(Mod(P), Set) has a finite cover via ev (Proposition 2.20). This is enough to
prove Makkai’s Theorem (Theorem 2.3).



Chapter 3

Continuous Families of Models

In this chapter we are going to consider categories of models of pretoposes as categories
indexed over Top, the category of topological spaces and continuous functions. Before
we go into the definitions we want to give some motivation for taking this approach.

Given a continuous function f : Y — X in Top we obtain a geometric morphism

fl
Sh(X)__T_’Sh(Y). Now, f* preserves finite limits and all colimits, this in particular

means that f* : Sh(X) — Sh(Y) is an elementary functor. For any pretopos P
composition with f* induces a functor Mods,x)(P) — Mods,y)(P) which we
also call f*. We want to relate this with the ultraproduct functors (see 1.4). Let
I be a set and consider it as a topological space with discrete topology, let 37 be
its Stone-Cech compactification and £/ : I — J3I be the usual embbeding. I =
{UU is an ultrafilter on I}, and a basis for the topology on I is given by sets
of the form J* = {U{ € BI|J € U} for subsets J C I. We will show later that
1. : Sh(I) — Sh(BI) is an elementary functor (see Proposition 3.18). We have an
equivalence of categories given by P : Set! — Sh(I) where P(A;)(J) = [1;es A; and
P(f)(J) = Mjes f; : [ljeqs Aj = Tljes B; for every J C I and (fi) : (A:) — (Bi) in

Set!. If U is an ultrafilter on I then we have a function 1 Lﬂ[ that sends the only

element of 1 to Y.

Lemma 3.1. The composition Set! 5 Sh(I) K- N Sh(ﬂl)—z—/(-* Set is naturally iso-
morphic to the ultraproduct functor defined by U.

Proof. Denote by L : Sh(BI) — LH/BI the usual equivalence where LH/AI is
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the category of local homeomorphisms over 1. If we start with a family (A;):e; in

Set! we have that

LEL(P(Adier) = [T Lim €L(P(Ad)ier)(W)

Fepl ¥ &

using the fact that the sets of the form J* form a basis for the topology of 51 we have

L(EL(P(Aiier)) =~ Uresr J@U-(Pmi)id)(‘]‘)

FeJ*

= Urepr lim (P(Adier) (€17(J7))

JEF

= Uress Jl%,n P(A)ier(J)

= U}'eal ,@ HiEJAi

Therefore, the fiber over i is lim [[;c; Ai . We proceed similarly with families of
morphisms. O i

Assuming we know that (I, : Sh(I) — Sh(BI) is elementary (see 3.18 below)
we have that composition with £/, induces a functor Mods,()(P) — Modsysn(P)
(called &1, as well) for any pretopos P. We have an equivalence F : Mod(P)I —
Modg,1)(P) given by F(M;)(P) = (M;P) and F(r;)(P) = (r; P) for every P in P
and every (7;) : (M;) — (N;) in Mod(P)'.

Corollary 3.2. The composition

F ' I
Mod(P)' — Modg;,1(P) K Modsy,51(P) — Mod(P)

is naturally tsomorphic to the ultraproduct functor defined by U. O

We obtain then the ultraproduct functors from continuous functions in Top.

3.1 Indexed Category Theory

Basic Definitions

We review indexed category theory, as in [19]; in [3] the approach is via fibrations.

To start with, we need a category T with finite limits, that we call the base category.
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We further assume that T is locally small.

Definition 3.1. A T-indexed category A consists of the following data
1. A category AX for every object X in T.
2. A functor f*: AX — AY for every arrow Y L XmT

3. A natural isomorphism

x X
AT
Lo
for every X in T
4. A natural isomorphism
A5 L AT
(fo g)\—'ﬁ*
.AZ
for every Z -5 Y X T,
Subject to the following coherence axioms
Al. The diagrams
(foly)*—=~(ly)*of* and (Ixof) —==f"o(lx)"
1 = 1 55
f* 1 1_AYOf* f* 1 f‘Ol_AX

commute for every Y . X
A2. The diagram
(fogoh) —=-h"o(fog)"

~ ~

(goh)*of*?h*og*of*
commutes for every W Sopdip o ¥ D,

Definition 3.2. Given T-indexed categories A and B, a T-indexed functor F' : 4 —
B consists of the following data:
1. A functor FX : AX — BX for every X in T.
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2. A natural isomorphism

.AX
FX
BX

for every Y Ly X in T
Subject to the following coherence axioms:

B1. The diagram

FX o (1X)*

FX01AX
Nl
FX
4
lBX 011'7A

(Ix) %

commutes for every X in T'.

B2. The diagram

FZo(fog)"— FZog*of*——=g o F¥o f*

(fog)roFX g o froFX
commutes for every Z - Y T, X inP.
Composition of T-indexed functors is defined in the obvious way.

Definition 3.3. Given T-indexed functors F,G : A — B, a T-indexed natural trans-
formation 7 : F — G consists of a natural transformation 7% : FX — GX for every

X in T, such that the diagram

Y frx
FY o fr—Td g o g
fx o FX f*TX f* o GX

f :
commutes for every Y — X in T

T-indexed natural transformations also compose in the obvious way.



68

Examples

We will be interested in the case where T is the category Top of topological spaces.
As an example we have the Top-indexed category SE7. Given a topological space
we define SET¥ to be the category Sh(X) of sheaves over X. If f: Y — X is a
continuous function then f*:SET¥X — SETY is the usual f*: Sh(X) — Sh(Y).

Here is another example. If A is a T-indexed category and, C is a small (ordinary)
category then we define the T-indexed category [C, A] as follows; [C, A = (A%)¢
for X in T. If Y =55 X is an arrow of T, then f* : [C, A]* — [C, A}Y is such that
(C L A% (c 1L Ax LS aY)

If Ais a T-indexed category, we define the T-indexed category A°?, such that
(AP)X = (AX)P and for YV 5 X in T, the transition functor is (f*)r. If B is
another T-indexed category, we can define the T-indexed category A x B such that
(A x B)X = AX x BX and the functor corresponding to f is f* x f*: AX x BX —
AY % BY.

T itself can be regarded as a T-indexed category 7 in the following way; Define
TX =T/X for X in T and, for Y L X define f* to be the pullback functor along

f.

Small Homs

Questions of size concerning a T-indexed category should be considered with respect

to the base category. Given A and A’ in A¥, we have the functor
HA,A’ . (T/‘Y)OP e SET,

such that for every

zZ

iy
gty
X
in 7/X, we have Ha a:/(f) = AY(f*A, f*A’), and
Hau(h): AV (f*A, frA) — A%(g"A, g* A')
is such that

(f*A- fA) o (A= (fR)A S B f"A X8 pr e A =5 (FR)" A = g7 A)).
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Definition 3.4. A T-indexed category A is said to have small homs if for every X
in T, A, A" in A% there exists an object hom* (A, A") : Hom* (A, A") - X in T/X

and a natural isomorphism
T/X(- ,hom™ (A, A")) = Haur.

We say that A has small homs at 1 if the above condition is satisfied for X =1

Whenever we have such an isomorphism we represent it by a horizontal line as

follows

f*A— f<A in AY
f — hom*X (A, A" in T/X.

Suppose that A has small homs. A morphism (b,¢) : (A,A") = (B,B’) in
(AX)P x AX induces a natural transformation Hyy : Haa — Hpp in the obvi-

ous way. This corresponds to a natural transformation
T/X (- ,hom*(A,A")) = T/X (- ,hom™ (B, B")).

By Yoneda, this last transformation is represented by a unique morphism in T'/X
that we denote by hom™ (b,') : hom* (A, A’) — homX (B, B'). If we have Z - Y
and Y -5 X in T, then

g — f*hom* (A, A" inT/)Y

fg — homX (A, A" in T/X
(fo) A= (fg) A" in A?
gf*A—- g f*A in A?

g — homY (f*A, f*A") inT/Y.

This means that homY (f*A, f*A’) ~ f*hom™* (A, A’) in T/Y . Therefore, if we define
hom(_,.) : A°? x A — T such that for every X in T, hom(_, )X (A, A’) = hom* (A, A')
and hom(_,_)¥(b,b') = hom*X (b,b') we obtain

Lemma 3.3. If the T-indezed category A has small homs then hom(_,_) : AP x A —
T is a T-indezed functor. O



70

3.1.1 Stability

Definition 3.5. We say that a T-indexed category A has T-stable colimits if for
every X in T, AX has colimits and for every f: Y — X the functor f*: AX — AY

preserves colimits.

Similarly we define the concepts of T'-stable coproducts, T-stable finite limits
etc. This concept of T-stability should not be confused with the somewhat related
concept of stability under pullbacks. To avoid confusion we will use the word universal
to mean stable under pullback in this section.

A related concept is

Definition 3.6. Given a T-indexed category A, an object X in T and a monomor-
phism m : Ag— A in AX, we say that m is T-stable if for every Y i, X in T we
have that f*m is a monomorphism in AY. We say that A has T-stable monomor-
phisms if every monomorphism in A% is T-stable for every X in T. We say that a

subobject m : Ag>—A in A¥ is T-stable if m is a T-stable monomorphism.

3.1.2 Well Powered Categories

Given a T-indexed category A and A in A%, define the functor
Ssub((-)"A) : (T/X)? - SET

such that for every
2 kT

P

in T/X, Ssub((-)*A)(f) = Ssub(f*A) is the set of T-stable subobjects of f*A, and
Ssub((-)*A)(h) : Ssub(g™A) — Ssub(f*A)is (B f*A) = (h"B—h*f*A =5 g=A),
for every T-stable subobject B f*A.

zZ

Definition 3.7. A T-indexed category A is said to be well powered if for every X in
T, A in AX| there exists an object sub¥(A): SubX(A) — X in T/X, and a natural
isomorphism 7'/ X (-, sub¥(A)) — Ssub((_)A). We say that A is well powered at 1 if

the above condition is satisfied for X = 1.



[f the T-indexed category A has T-stable pullbacks and is well powered, then for

every a : A — A’ in A* we can define the natural transformation Ssub((_)*a) :
Ssub((-)*A") — Ssub((-)*A) such that for any Y L xw T/X we have that
Ssub(f*a)(B f*A’) is the pullback

Ssub(f*a)(Br—s f*A")

frA

This induces a natural transformation T'/X (-, sub®(A")) — T/X(_, subX(A)). By
Yoneda this last natural transformation is represented by a morphism in T'/X that
we denote by sub®(a) : subX(A’) = subX(A).

Define sub(_) : A®” — T such that sub(_)¥(A) = subX(A). and sub(_)¥(a) =
subX (a), for every X € T and A -5 A’ in AX. As for hom we have

Lemma 3.4. [f the T-indered category A has T-stable pullbacks and is well powered
then sub(_) : A? — T is a T-indezed functor. a

Notice that if A has T-stable pullbacks then every monomorphism is T-stable.

3.1.3 Adjoint Functors

Definition 3.8. If ' : A — B is a T-indexed functor, we say that F has a right
adjoint if there exists a T-indexed functor R : B — A and T-indexed natural trans-
formations n: 1p — RF and € : FR — 1 such that the diagrams

F
F-LFrpr and  RrR-Re

NJe ™ A

F R

R

commute.
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3.1.4 Internal Functors

Let D be the T-category

o {504
Dy b P D,
™1 61

that is, D is a category object in T'.

Definition 3.9. Let A be a T-indexed category, and D a T-category as above. An
‘nternal functor from D to A is a pair (4,64 — &] *A) with A in AP0 and € a

morphism in AP, such that the diagrams

id* 65 A ‘and T305A o6 o7 A T3 A

\ /d* ~ L

1d*67A s A —— 1" 6 A—— 161 A
¥&

commute. Given another internal functor (B,6;B = &;B) from D to A, an internal
natural transformation a : (A,854 — 67A) — (B, ;B =, §;B) is a morphism

a: A — Bin AP0 such that the diagram

5iA— . 8:A
53(11 té;a
6 X lB

commutes.

Internal natural transformations compose in the obvious way, and we obtain the
category AP whose objects are internal functors from D to A and whose morphisms
are internal natural transformations. Furthermore, we can T-index AP as follows.
Given an object X in T, form the T-category D x X and define (AP)¥ = APXX T
f:X — Y is a morphism in T, then f*: AP*XX — APXY s such that (C,65C =y
§;C) = ((Do x f)*C,(Dr x f)"p)-
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If H:D — C is the T-functor

To (§0

R N
™ 51

H, H, Hy
o 50

¢ T g IRRRREEN
™ 01

between T-categories, we define H* : A® — AP such that (4,54 = 0TA) —
(HiA, S HA =5 HrosA 29 HrszA) =5 61H:A).

If F: A— Bisa T-indexed functor between T-indexed categories, we can induce
the functor F? : AP — BP such that (4,434 =, 61A) > (FDoA G5FPoA =
FDig; i FPigzA =5 §;FPoA). 1t is not hard to see that when H : D — C as

above we have the following commutative diagram

gc—4H . 4o
FC [ D
B —— 5P

Small Limits

We can define a T-indexed functor Ap : A — AP such that for every X in T
and a : A - A" in A%, AZ(A) = (%A, (8o x X)*15A = (6; x X)*1}A), and
A& (a) = % a, where mx : Do x X — X is the projection.

Definition 3.10. We say that the T-indexed category A has D-limits if the T-

indexed functor Ap has right adjoint limp.

D-colimits are defined in the same fashion, requiring a left adjoint instead of a

right adjoint.
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3.2 Functor Categories

We consider now categories of the form T-ind(A, B) of T-indexed functors form A to

B. As in ordinary category theory T-ind(A, B) inherits its properties from B.

Proposition 3.5. Let A and B be T-indezed categories. If B has T-stable limits
then the category T-ind(A,B) has limits and if F : A — C is a T-indexed functor
then the functor T-ind(F,B) : T-ind(C,B) — T-ind(A, B) preserves limits.

Proof. Let T : I — T-ind(A, B) be a diagram. For every X in T we obtain a
diagram ['* : I — C AT (AX,BX) such that T* = (T1)X and T*: = (T'4)* for every
i: 1 — I'in I. Define ©X = Li_n_zFXI. Since BX has limits we have that for every A
in A%, 0% (A) = LiTTB(FIX(A)).I Given f:Y — X we obtain a natural isomorphism

~

G)Yf*zli_n_zrfyf' L@fo]Xi.f*@F[Xzf*@X
I I 8

~

f*I'1X and the

second isomorphism by the fact that f* preserves limits. It is not hard to see that

where the first arrow is induced by the isomorphisms I §*

these isomorphisms satisfy coherence, making © : A — B a T-indexed functor. For

every I in I we define X : 0% — ['IX as the projection. It is easy to see that

this definition makes 7; a T-indexed functor and the family (@L ['I) a cone. The

universal property is clear. O

Remark 3.1. Notice that the above proposition remains true if we replace limits by
finite limits or coproducts etc, provided they are T-stable in B. Notice furthermore
that the limits (or colimits, etc) are calculated doubly pointwise, that is they are cal-
culated as the limit in T-ind(AX, B¥*) and they are pointwise at every T-ind(A*X,B*).

Lemma 3.6. If B has T-stable strict initial object then T-ind(A, B) has strict initial
object. O

Proposition 3.7. If B has T-stable finite limits, a T -stable initial object, T'-stable
coproducts and for each X in T the coproducts are disjoint and universal, then

T-ind(A, B) has coproducts and they are disjoint and universal.
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Proof. By remark 3.1, T-ind(A, B) has coproducts and they are calculated point-
wise at each X in T. Since finite limits are pointwise too at every X and so is the

initial object the result follows. O

Proposition 3.8. If B has T -stable finite limits and T-stable quotients of equivalence
relations and for every X in T these quotients are universal then T-ind(A,B) has

quotients of equivalence relations and they are universal.

o
Proof. It is easy to see that an equivalence relation F — G in T-ind(A, B) pro-
T
X

duces an equivalence relation F'X 7X. Then proceed as before. O

-
Proposition 3.9. If B has T-stable finite limits, T-stable sups of subobjects and for
every X in T they are universal then T-ind(A, B) has sups of subobjects and they are

universal. a
Assume now that T has coproducts. Let A be a T-indexed category and {Xq}

a family of objects in T'. Consider its coproduct (X, the, [Ia Xa)a- We obtain the
functor (z%) : AllaXa — 1], AX=. We say that A distributes coproducts if for every
family { X} of objects in T the functor (z}) : AlaXe 5 [T A%« is an equivalence

x

*

of categories with pseudo-inverse (i},

)~. Notice that if we have a T-indexed functor

F: A— Band an arrow f : Y — X then the isomorphisms FX“i;;i;FHa Lo

induces an isomorphism

AHG X _<Z.;l. M. AXa

Fll, Xa t ’7‘ I, FXa

Bl Xe e Bks

and if both A and B distribute coproducts we obtain then a natural isomorphism

AHQXQ .‘ﬂ Ha ‘AXQ
o~ { I, F*e
<,L~*>— HQBXQ
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Definition 3.11. Let T-IND be the full, 2 full subcategory of T-ind whose objects

are T-indexed categories that distribute coproducts.

Remark 3.2. Since for any A and B in T-IND we have T-IND(A, B) = T-ind(A, B) it
is clear that the propositions above remain true when we are dealing with T-IND.

The category SET is clearly an object of Top-IND.

3.3 Continuous Families of Models

Let P be a pretopos, we define the Top-indexed category MOD(P) of models over
P as follows: Given a topological space X, let JMO’D(P)X = Modspx)(P) and if
f:Y — X define f*: Modsyx)(P) — Mods,y)(P) as composition with f* :
Sh(X) — Sh(Y)
(P—A—[— Sh(X)) — (Pl{— Sh(X) ey Sh(Y)).

Since f* : SA(X) — Sh(Y) has a right adjoint and it is left exact it is elementary,
we have then that the composition with M is indeed a model. It is not hard to see
that MOD(P) is in Top-IND.

The Top-indexed category SET is equivalent to MOD(P) for P = (Set®") o

Indeed, we know from Theorem 1.3 that we have an equivalence
Topos/Set(Sh(X), Sh(P,J)) =~ MOD(P)*
where J is the precanonical topology on P, and (see (8] 6.33)
Topos/Set(Sh(X), Set*) ~ Sh(X).

We have (see [11] 1.8)

Proposition 3.10. The Top-indezed category SET has Top-stable finite limits, Top-
stable colimits, Top-stable quotients of equivalence relations and they are universal at
every X in Top, Top-stable sups of subobjects and they are universal at every X in
Top. O
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Corollary 3.11. For every Top-indezed category A the category Top-ind(A,SET)
is an co-pretopos (in the sense of [18], that is, it is left ezact, has universal sups of
small sets of subobjects, universal images, universal quotients of equivalence relations

and universal disjoint coproducts).

Proof. The result follows from Propositions 3.5, 3.7, 3.8 and Lemma 3.6. d
It is shown in [11] that the Top-indexed category SET is well powered, cowell

powered and has small homs. We have

Proposition 3.12. The Top-indezed category MOD(P) has small homs at 1.

Proof. Let M € Mod(P), and N € Modg;x)(P). Consider the diagram T :
El(M) — Top/X such that I'(a € MP) = 7VP where we consider NP as a local

homeomorphism over X, and I'((e € MP) — (b € MP')) = (NP L e NES
Consider im I'(a € MP) = lim Z\IP in Top/X. Then for every f : X — Y we have
(M) Bi(m
h:f——»L@;\'P in Top/ X
(M)

<<h(aeMP) f — "\’P>(aeMP)>p wn Top/ X

where for every p: P — P’ and any @ € M P the diagram

aEMP

h(Mp(a)e \/!P\'\ /Vp

<<h(a€x’\1P) . f — NP>

commutes. Now,

(aeMP)>P in Top/ X

<<k(aeMp) 11— f*NP>(aeMP)>P win Top/Y

where for every p: P — P’ and any a € M P the diagram

k(a
(e\lP) fNP

k(M a)eMP\ /Vp

f*NP
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commutes. Then
<<k(a€Mp) 1l — f*‘NP>(aeMP)>P in Top/Y
Y*M — f*N in MOD(P)Y
f*X*M— f*N in MOD(P)"
In particular, for M, N in Mod(P) define hom'(M,N) = lsm NP in Top. a
BI(M)

Notice that this gives a topology to the sets Mod(P)(M, N) for M, N in Mod(P).

Indeed, for the topological space 1 we have the corresponding isomorphism
Top(1, hom' (M, N)) — Mod(P)(M,N).

Notice that hom'(M,N) is a subspace of [I,empp) NP. It is not hard to see
that the topology for Mod(P)(M, N) has as subbasis sets of the form Upqs{h :
M — N|hP(a) = b} with Pin P,a€ MP and b€ NP.

Further analysis of smallness conditions for Top-indexed categories of models will

be done elsewhere.

3.4 Los Categories

So far we have not dealt with arrows of the form f. that allowed us to obtain the

ultraproduct functors at the beginning of this chapter. We now take care of this.

Definition 3.12. Let f: Y — X be a morphism in Top. We say that f is ultrafinite
if f.: Sh(Y) — Sh(X) preserves finite coproducts and epimorphisms.

Notice that f : ¥ — X ultrafinite means in particular that f. is an elementary
functor. Therefore, for every pretopos P, composition with f. : Sh(Y) — Sh(X)
induces a functor MOD(P)Y — MO’D(P)X, also denoted by f., that is right adjoint
to f*: MOD(P)* = MOD(P)".

As we mentioned before, given a discrete topological space I the usual embbeding
I — BI into its Stone-Cech compactification is ultrafinite. We show this fact and

give some more examples of ultrafinite functions below (see 3.5).
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Definition 3.13. Given A in Top-IND we say that A is a Los category if for every
ultrafinite morphism f : ¥ — X the functor f* : AX — AY has a right adjoint
fuot AY —s A%,

Given A and B in Top-IND we say that a Top-indexed functor F': A — B is a
Los functor if for every ultrafinite f : ¥ — X in Top we have that the composition

Fxf* nFXf*f.f*FXf*_::"foYf*f* f*Fyflf*FY

is an isomorphism where 7 is the unit of f* 4 f. : BY — BX, ¢ is the counit of
f*4 f.: AY — AX and the middle isomorphism is induced by f*F* —2>Fyf,.

Given a pretopos P and an object P in P is is easy to see that the evaluation
Top-indexed functor evp : MOD(P) — SET is a Los functor.

Definition 3.14. Let £os be the 2-category whose objects are Los categories, its

1-cells Los functors and its 2-cells Top-indexed natural transformations.
Thus £osis a locally full subcategory of Top-IND.

Proposition 3.13. If B is a Los category that has
-Top-stable finite limits.
-Top-stable initial object strict at every X in Top.
-Top-stable finite coproducts that are disjoint and universal at every X.
-Top-stable quotients of equivalence relations universal at every X in Top.
Then for every Los category A the category £0s(A, B) is a pretopos. Furthermore,

the corresponding limits and colimits are calculated as in Top-IND(A, B).

Proof. By Propositions 3.5, 3.7, 3.8 and Lemma 3.6 we have that Top-IND(A, B) is
a pretopos. All we have to show is that finite limits (coproducts, etc) of Los functors
in Top-IND(A, B) produce Los functors. Clearly the terminal functor 1 : A — B is
Los. Let F,G be functors in £0s(A,B) and f : ¥ — X ultrafinite. Consider the
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following diagram

(F x G)* f.

FXf. x GXf.
n(F x G)* f. nFXf. x nGX f.

L X fof*GX f.

ff(F x G)* f.

v v
fo(F x G)Y f* - EFY £ f 6 S8 T B
f(FxG)e f.FYe x f.GY¢
L ,
FF X G ———— fFY x £.GY

where the top square commutes because f.f* preserves finite products and 7 is nat-
ural, the one in the middle commutes by coherence and the bottom one commutes
because (F x G)Y is pointwise. Since F and G are Los the vertical composition on
the right is an isomorphism. Therefore the vertical composition on the left is an iso-
morphism. A very similar argument shows that the pullback of Los functors is also
Los. Therefore £05(.A, B) has finite limits.

The initial functor 0 : A — B is clearly Los. Showing that L£os(A,B) has finite
sums is a similar argument as before using the fact that f. preserves finite sums.

Finally we show that £0s(A, B) has quotients of equivalence relations. Suppose that

F—’Gls an equivalence relation in £0s(A,B). It is easy to see that (o,7) is then

an equlvalence relation in Top-IND. Consider G - H its quotient. We have to show
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that H is Los. Consider the following diagram

B (TXf,, 5 I/Xf* HX
F f* TXf* G f* f*
qF= f nG* L nH*f.
fof oc* f. '
LPFXL, TT—X—T—’f*f'GXf, T % < o
: ;Yf*f f.o¥ f1. G},_, H,,'_*
¥ = fxTYf*f* f* f f* f*l/yf*f* f* f f“
fo I ¢ f.G¥¢ Gl 28
fua® '
f-FY 7 RO

It is not hard to prove that the diagram commutes. Since f. preserves epimorphisms

we have that f.»¥ is an epi. Since

Y
f,. FY ﬂ, f*GY

for¥ [ lf*l/y
G —= [ HY
1.6" 5 f

is a pullback we have that the last row in the diagram is a coequalizer. Since the first
row is also a coequalizer and the first two vertical compositions are isomorphisms we
conclude that the third vertical composition is also an isomorphism. So we have that
Hisin Los(A,B). O

It is easy to see that if B satisfies the conditions of Proposition 3.13and F': A — C
is a Los functor between Los categories then £os(F,B): Los(C,B) — Los(A,B)is
an elementary functor. We therefore obtain a functor £0s” — PRETOP.

3.5 Characterization of Ultrafinite Functions

We now turn our attention to ultrafinite functions in Top.
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In what follows we will use the well known equivalent descriptions of SETX as
the usual Sh(X) and as the category LH/X of local homeomorphisms over X, for
a topological space X. We use the usual equivalences I' : LH/X — SETX and
L:Sh(Y) — LH/Y (see [2] for example).

Lemma 3.14. Let f : X — Y be a continuous function then f.: Sh(X) — Sh(Y)
preserves the initial object if and only if f(X) is dense in Y.

Proof. Suppose first that f. preserves initial object. Let V be a nonempty open set
of Y, and let O represent the initial sheaf, then f.(0)(V) = 0. That is, O(f~'V) = 0.
Therefore, f~'V can not be the empty set, and then V' N f(X) # 0

In the other direction, suppose f is dense. Let V be open in Y, since f(X) is
dense in Y, we have that f~'(V) # 0. Therefore O(f~'(U)) = 0. So f.(0) = 0.
O

For the rest of the section rather that working with f. : SA(X) — Sh(Y), we will
be working with LH/X L3 Sh(X) ELN Sh(Y) 4 LH/Y. If we have

E __h.__. Ei
p\ /p’
X
in LH/X, then we have that the map

lim D(E,p)(f (V)R T tim D, p)(F(V))

v v
2y yeY Sy

is such that [s € T(E,p)(f~1(V))], — [hos € T(E,p)(f7'(V))ly

Lemma 3.15. Let f : X — Y be a continuous function with dense image. Then
fo: Sh(X) — Sh(Y) preserves finite coproducts if and only if for every open V CY
and every y € V, whenever f~}(V) is the union of two disjoint open sets of X, there
ezists W C Y open withy € W such that f~'(W) is contained in one of them.
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Proof. Suppose f. preserves finite coproducts, therefore Lf.I' preserves finite co-

products. Consider the following coproduct in LH/X

Koeadles B K vl
(idx,idx)

idy il
4

Since L f.T" preserves finite coproducts, we have that the induced continuous function
LfT(X,idx)IILf.T(X,1dx) £ Lf.T(X1IX, (xdx,idx))

is a homeomorphism. Take V C Y an open set, y € V, and suppose that f~}(V) =
AU B with A and B open and disjoint. Define s : f~(V) — X [ X such that
4 is the inclusion of A into the first factor, and s|g is the inclusion of B into the
second factor. Then s is continuous and [s|, € Lf.T'(X [[ X, (¢dx,idx)). Therefore

there exists an open set W of Y, and a continuous function ¢ : f~'(W) — X such

S

that one of the following diagrams commute

it x YWy~ X

e s

FA VXX (V) XX

In any case, we have f~}(W) C A or f~Y(W) C B.
In the other direction, consider the coproduct
E—E.pE B g

(p,p)
p

X

in the category LH/X. Then we induce the unique morphism ¢ that makes the




diagram

Lf.T(E,p) — Lf.I(E,p)lI1Lf.T(E',p')~— Lf.T(E'.p")

Lf.T(EILE, (p,P))

commute. We have to show that ¢ is a homeomorphism. First we show that ¢ is
monomorphic. Suppose ¢([f~1(V) — E],) = o([f"}(W) = E’].). Then it is clear
that y = z and that

[f7Y(V) = E 2 E[EY, = [f\(W) -5 E' 25 ELIE),

Therefore, there exists U C Y open such that y e U C VN W, and r : f~1(U) —
E 11 E' such that
fFUV)— fIU) ——= (W)

s | t

E—— E[[E ~—FE'

lE 135

commutes. Suppose z € f~'(U). Then r(z) € E and r(z) € E’, a contradiction.
Therefore f~'(U) = 0. But U is open and nonempty, and f(X) is dense in Y,
therefore f~'(U) is nonempty, another contradiction. Therefore we conclude that it
is not possible that ¢([f~'(V) == E],) = ([} (W) = E'].).

Suppose now that p([f~(V) — EJ,) = ¢([f~Y(W) == E].). Then we proceed
as before, so y = z and we can find U open in Y withy € U and U C VN W and
r: f7Y(U) — E[] E' such that

W T} smafat (W)

|

B == EIIE : E
lE (32
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commutes. But this means that Im(r) C E, and

) —==)

T

V) —

therefore [f~}(V) - E], = [f~'(W) — E],, and ¢ is mono.

Now, take [f~1(V) = EL1 E'], € Lf.T(EII E',{(p,P')), then f~ (V) = s} (E)U
s71(E’) with s7'(E) and s~!(E’) open and disjoint. Therefore there is a W C Y open
such that y € W, and f~}(W) C s7Y(E) or f~Y(W) C s7Y(E'). If f[~Y(W) C s7(E).
Then o([f~1(W) SIf_—l(>W) E],) = [s]y- The other case is similar. Finally, ¢ is open
because it is a local homeomorphism. O

If we consider

N

in LH/X as before, then Lf.I'(h) is an epimorphism iff for every y € Y, every V

E

EI

open in Y with y € V and any s : f~'(V) — E’ such that p’ o s equals the inclusion
of f~}(V) in X, then there exist W open in ¥ withy € W and ¢t : f~Y(W) — E

such that

commutes, where the left vertical arrow is the inclusion.

Lemma 3.16. If f : X — Y is a continuvous function, then f, : Sh(X) — Sh(Y)
preserves epimorphisms if and only if for every V C Y open, y € V and every open
cover {Uq}uca of f71(V), there exist an open W of Y withy € W C V, and a disjoint
open cover {Wy}aea of f~Y(W) such that for every a we have that W, C U,



86

Proof. Consider a commutative diagram

g
X

with p and p’ local homeomorphisms and h onto. Take V' open in Y and y € V.
Suppose that s : f~1(V) — E’ is such that p’ o s equals the inclusion 7 : f~'(V) —
X. Since s is a local homeomorphism, it is open. Therefore s(f~'(V)) is open in
E', and s : f~Y(V) — s(f~1(V)) is a homeomorphism with inverse p’. Since h
is continuous we have that A~'(s(f~*(V))) is open in E. So we have the following

commutative diagram

/

R (s(F1 (V) 2 s(f1(V)) —E— f(V)

where the composition at the top is clearly onto. It is clear that it is enough to find

W cVwithyeWandt: f~H{(W)— h7(s(f~1(V))) such that

FHW) —L B (s(f7(V)))

\ p'oh

FTV)

commutes. So, we may suppose that we have a local homeomorphism ¢ : £ —

" f~Y(V) that is onto and we want to find W C Y withy € Wand t: f~'(W) — E”
such that

L e
N,
V)

commutes.
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For every z € f~1(V) choose U, C f~(V') open, U. C E" open such that z € U,
“and ¢ : U, — U, is a homeomorphism. Then, {U;},es-1(v) is an open cover of
f~YV). Therefore there exist W C V open with y € W and a disjoint open cover
{Wa}zes-1(vy of f71(W) such that W, C U, for every z € f~Y(V). Define t, =
(qlus)Yw, : W — E". Since {Wy}.es-1(v) are disjoint and clopen in f~YW) it is
clear that we can put them together to obtain the continuous function ¢ : Y (W) —
E" such that t|w, = t,. t has the required property. d
We put Lemmas 3.14, 3.15 and and 3.16 together in the following proposition.

Proposition 3.17. A continuous function f : X — Y is ultrafinite if and only if f

satisfies the following conditions:
(1) f(X) is dense in Y.

(2) For every open V of Y and any y € V, if fY(V)=AUB with A and B
open and disjoint, then there exists an open W C V with y € W such that
f~Y W) cC A or fTH(W) C B.

(3) For every open 'V of Y, any y € V and any open cover {Us}aea of 50,
there exists an open W C V with y € W and a disjoint open cover {Wq}aea of
f~Y(W) such that for every a € A we have that W, C U,.

d

Proposition 3.18. Given a discrete topological space I, the usual embedding {1 :

[ — BI into its Stone-Cech compactification is ultrafinite.

Proof. Since ¢I is dense we have by Lemma 3.14 that &1, : Sh(I) — Sh(BI)
preserves the initial object. Take a basic open J* and an element { € J* and assume
that £171(J*) = J; U Jy with J;y N Jy = 0. Since 171(J*) = J we have J1 U J; € U.
Since U is an ultrafilter that means that J; € f or J, € 4. Thatist € Jy or U € J3
and £171(J;) C Ji for k =1 or for k = 2. By Lemma 3.15 we have that {/. preserves
finite coproducts. Using Zorn’s lemma it can be shown that for any family {/,} of
subsets of I we can find a disjoint family {J,} such that U, Jo = U, I and for every
a, J, C I,. So given a basic open J*, a point # € J* and an open covering {/,}

of £17! we simply replace the family {I,} with a disjoint family {J,} with the same
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union such that J, C I, for all . By Lemma 3.16 we have that {I. preserves epis.
a

We need not take all of 3. If we take a non principal ultrafilter &/ on [ and
consider the topological space £1(1) U {U} with the topology it inherits from BI we
have that the resulting embbeding I — &I(I) U {U} is ultrafinite. We normally
identify €I(I) with I, denote the element corresponding to U by ay and denote the
resulting space by .

Another example of an ultrafinite function is the following. Let D be a directed
category. Consider the topological space Xp whose elements are the objects of D
and give Xp the Alexandroff topology, that is the sets of the form 7(d) = {d'| there
exists an arrow d — d'} form a basis for the topology. Consider the topological space
Xp U {p} where p ¢ Xp and with basis {I(d) U {p}}sep. Notice that we need D
directed for the given family to form a basis. We have an obvious continuous function

Xp — Xp U {p}. It is not hard to see that this function is ultrafinite.



Chapter 4

Algebras

4.1 2-Monads

We will consider several monads. In this section we give the definitions we will be
using later to fix the notation. We follow the notation of [5].

Given a 2-category A, a strict 2-monad on A is a 2-endofunctor T: A— A
together with 2-natural transformations 7 : 1 — T and p : TT — T such that the

usual diagrams

TnA TuA
TA 2 gy Al 2 TTTA—E>T A
l7a LA lra nT A pA
TA TTA 74" TA

commute on the nose. Given a strict 2-monad T = (T, n, ) a strict algebra is a pair
(A, ®) where A is an object of A and ® : TA — Ais a l-cell of A such that the

ususal diagrams

A
A=A TTA-tA A
14 () Td i)
A
TA—5— A
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commute on the nose. Given algebras (A, ®) and (B, V) a morphism of algebras is a
pair (H, @) : (A,®) — (B, ¥) where H : A — Bisal-cellin A and ¢ is an invertible

two cell

TA

TH

TB

satisfying the coherence axioms

TTH

TTA———TTB
uAl l#B
TA—z—~TB
of e
A i B

and
) O -
nAl lnB
TA TH TB
o)A
A 7 B.

o

1.4

v

A

H

B

r7A-LIH 7R

ch[ Tyl T

TA——:IT’TB
(I)l Vl\ll
A 7 B

dy

When ¢ is an identity we say that the morphism (H, ) is strict.

We consider the 2-category T-ALG whose objects are strict algebras (A, ®), whose
1-cells are morphisms of algebras (H,p) : (A,®) — (B,¥) and whose 2-cells 7 :




(H,p) — (K,v) are 2-cells 7 : H — K in A such that

TK
TA W 7B = 7a4-IK. rp
TH y
AR 5 k=
s

H
We have the 2-subcategory T-ALG; of T-ALG where we restrict the morphisms

to strict morphisms. Thus the inclusion 2-functor is not full but it is locally full and

faithful.

4.2 Functorial Weak (Co)Limits

In this section we review some of the folklore of weak limits.
Let A be a category. For every object A in A we have the usual forgetful functor

l'/'A . A/A — A.

Definition 4.1. A functorial weak initial object in A is a pair (Z, F) with Z an
object of A and F: A — Z/A a functor such that the diagram

A L T

1 A\ '/UZ
A

commutes. We say that A has a functorial weak initial object if such a pair (Z, F)

exists.

Functorial weak terminal object is defined dually.
If (Z, F) is a functorial weak initial object in A then clearly Z is a weak initial

object in A. Furthermore, for every arrow a : A — A’ the diagram

7 FA

NI

A/

A




commutes. In particular, considering FA: Z — A as an arrow in A we have that

7 FZ

z
FAN\, FA
A

(4.1)

commutes.

Lemma 4.1. [f (Z,F) is a functorial weak initial object in A then FZ : 7 — 7 is

an idempotent.

Proof. For A= Z in 4.1 we obtain FZo FZ = FZ. O

Proposition 4.2. If A has a functorial weak initial object (Z,F) and split idempo-

tents then A has an initial object.

Proof. From Lemma 4.1 F'Z is an idempotent. Consider a splitting

R A
e\ /n
g
Since
FZ

& ==
PN,
S

commutes, we have mo FS = FZ = moe. Since m is mono, F'S = e. Given A

FA

: m
in A we have the arrow S — 7 —— A. Suppose now that we have another arrow

g:S5 — A. Consider the diagram

Z
FZ
/:/ y
FS
NA

Both triangles on the left commute and the exterior triangle also commutes, therefore

VA

FAomoe=goe. Since e is epi we have FAom = g. This shows S is initial. O
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Let ' : I — A be a diagram. Define the category Cocone(T') of cocones over TI'.

i

That is, the objects of Cocone(I') are cocones (F1—1>A)1 and a morphism

o {r1 410 4y, o 1o ay,

is an arrow a : A — A’ such that for every I in I the diagram

a

A A

. /h
B

commutes. There is an obvious forgetful functor Cocone(I') — A and a weak colimit
cocone for I' in A is clearly a weak initial object in the category Cocone(I') and

vice versa.

Definition 4.2. A functorial weak colimit for " in A is a functorial weak initial

object in the category Cocone(I).

Functorial weak limits are defined dually.

A functorial weak colimit for I' in A clearly gives a weak colimit cocone for T'.

Lemma 4.3. If the category A has split idempotents then the category Cocone(T)
has split idempotents. a

Proposition 4.4. [f a category A has split idempotents and a functorial weak colimit
for a diagram I' : I — A then ' has a colimit in A.

Proof. By Lemma 4.3, Cocone(I') has split idempotents and we are suppos-
ing that Cocone(I') has a functorial weak initial object. Then by Proposition 4.2,
Cocone(I') has an initial object. This initial object is a colimit cocone for ' in A.
O
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4.3 Pseudo-retractions

: H :
Suppose now we have functors A—— B and B— A and a natural transformation

A H .p
1,&"—%2
A

Proposition 4.5. In the above situation, if B has a functorial weak initial object

(4.2)

then A has a functorial weak initial object.

Proof. Assume (Z, F') is a functorial weak initial object for B. Given a: A — A’

in A we have the commutative diagram
A ﬂ/_i_. HA
FH A\ / Ha
HA

in B. Applying R and using the naturality of § we obtain the commutative diagram

HAoRFHA

A’oRFHLl\ /

Therefore (RZ,6(-) o R(FH(.))) is a functorial weak initial object in A. a

Remark 4.1. Notice that for the dual, that is for functorial weak terminal object we
need to reverse the natural transformation 6.
Assume now that 6 in 4.2 is a natural isomorphism and let I' : I — A be a

diagram. We can induce then a functor R’ : Cocone(HI') — Cocone(I') such

1
6T, pyry B0,

that R'(HTI-Z-B); = (I —L. RB); and R'b = Rb for every b :
(Fl—£1—> )i — (F[LB')I in Cocone(HT'). We have that H induces a functor

H' : Cocone(I') — Cocone(HT) such that H’(F]L»A) (HT I —= Hfl HA);
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and H'a = Ha for every a : <F]—-&—* ) (Flf—I—A’)I in Cocone(I'). We can

induce a natural isomorphism

Cocone(Tl Cocone(HT)
1C’or:one\ /
(4.3) Cocone(l'
such that H(I‘] Jr Ay =04 {TT—— HFI‘RH” RH fi ———>RHA); — (p[J_I.A>I

Theorem 4.6. If 6 in 4.2 is a natural isomorphism, then any diagram I' : I — A
H

such that I —— A —— B has a functorial weak colimit (functorial weak limit) in B
has a functorial weak colimit (functorial weak limit) in A. In particular, if A has

split idempotents then I' has a colimit (limit) in A.

H

Proof. Since I —— A—— B has a functorial weak colimit in B we have that
the category Cocone(HT) has a functorial weak initial object. Since 6 is a natural
isomorphism we can induce f in 4.3. By Proposition 4.5 we have that Cocone(I)
has a functorial weak initial object, that is I' has a functorial weak colimit in A. If
A has split idempotents then by Lemma 4.3, Cocone(I') has split idempotents. By
Proposition 4.2 Cocone(I') has an initial object. This initial object is a colimit for
['in A. O

Remark 4.2. In the cases we are going to consider the category B will have split
idempotents. This implies that A has split idempotents (provided € is a natural
isomorphism). Indeed, if a : A — A is an idempotent in A then Ha is an idempotent

in B. Splitting Ha and applying R we obtain a splitting of RHa, use now that ¢

is iso. We will also have a colimit (limit) of the diagram I — A— B in B. In

this situation the colimit for I' in A is obtained as follows; take the colimit cocone

(HTI -2 lim HT); in B, this gives a cocone
. .
(o1 O pyrr 2 g R i BT,
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This induces an arrow v : lom HI' — H R lzm HT such that for every I the diagram

17

HTI lim HT

HRij o H9r1-1\ /

(4.4) HRlim HT

commutes. Then 8R(lim HT) o Ry is an idempotent and a splitting of it produces
the colimit of I' in A.

Remark 4.3. As a consequence of Theorem 4.6 we obtain that if a category is a retract
of a complete category (in the sense that 6 in 4.2 is the identity) then it is complete.

This result appears in [7]

4.4 Pretoposes Revisited

F
We know from 1.6 that we have a 2-adjunction Pretop“[_Lea:. Denote by T the
L

generated 2-monad. We use the results of the previous section to show that if a left

exact category C has a T-algebra structure then C is necesarily a pretopos.
Recall that for any H : C — D in Lex, FC = (Set®”).,;, and F(H) = Langer.
Let T = (T,n, p) be the 2-monad generated by F - U.

If we start with an T-algebra (C, ®) we have the following commutative diagram

c

1 TC

c\/p
C

Remember that nC is the factorization of the Yoneda embedding through 7'C and

C = (Set®”)con
1

since C has split idempotents, we have by Theorem 4.6 that C has colimits of all

those diagrams I' : I — C for which the diagram ILC—£>TC has a colimit
in TC. It follows that C has initial object, finite coproducts and coequalizers of

equivalence relations (equivalence relations are preserved by nC as it is left exact).

Proposition 4.7. If (C,®) is a T-algebra then the initial object in C is strict.
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aF

Proof. Denote by 0 the initial object of TC and by O the initial object of TTC =
(Set((setc P)C"")op)a,h. Following the image of the unique arrow O — TC(_,0) around

the commutative diagram

uC

(Set((Setcop)coh)OP)Coh (Setc"?’)coh
Langop l d
Cop
(4.5) (Set )coh (b C

we have on the one hand that ®(pC (0 — TC(_,0))) = ®(1o) = 1go, and on the other
®(Langr (O — TC(.,0)) = ®(y) where v : 0— C(_,®0) is the unique morphism
from 0 to C(_, ®0). Since the initial object in C is obtained as a splitting of ®(y)
we conclude that the initial object in C is 0. Given any arrow f: D — C in C we

have that the square

0 0
Cl-, D c(.,C
(- D) g7 € 0)
is a pullback. Applying ® we obtain the pullback
®0 — ¢0
D~
7 C

Therefore the initial object of C is stable under pullback. This means that the initial
object is strict. O

Proposition 4.8. If (C,®) is a T-algebra then finite coproducts in C are disjoint

and stable.

Proof. We do it for binary coproducts. Let C, D be objects of C. Consider the

arrow

TC(,C(,C)) + TC(, C(, D)) FE=ICal. ro( C(, C) + C(., D))
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in TTC where i, : C(.,C)—C(.,C)+C(,,D)and i, : C(_.,D)—C(_,C)+C(_, D)
are the correspondig injections. We chase the arrow (T'C(_,7;),TC(_,1;)) around
the diagram 4.5. We obtain ®(uC((T'C(-,11),TC(-,12)))) = ®(lec)+cp)) =

lo(c(_c)+c(_,p)) on the one hand, and
®(Langer((TC(-,11), TC(-,12)))) = ®((®(:1), @(22)))

on the other. Since the coproduct in C is obtained as a spliting of the idempotent
O((®(21), ®(22))) we have that ®(C(-,C) + C(_, D)) is the coproduct in C of C and
D. In other words ®(C(_,C) + C(-,D)) = C + D. We have that the square

' (———

C(_LC) ) EZZC(_, D)

(31

is a pullback. Applying ® we get the pullback

0 D
| o
C T C+D

That is, the coproducts in C are disjoint.

nfal g 9 400

For stability we use Lemma 1.6. Suppose we have C' + D

Then we have the pullback

Cbma) + CGma)o oy 4 o, D)

(C(-ym11), C (=, 721)) l [ (C(-, f1),C(- f2))

CL,Ph)+C(.P)

where the squares

P, T12 C P, T22 D
SR N
A g B A g B
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are pullbacks. Applying ® we get the pullback

P] +P2 7r]2+ﬂ'22 C+D
(T11, T21) (f1, f2)
A B

g

Therefore finite coproducts are stable in C. O
Proposition 4.9. If (C, ®) is a T-algebra then C has stable quotients of equivalence

relations.

7‘1 . . . .
Proof. Let R— C be an equivalence relation in C, consider the quotient
9

in T'C and the quotient

re o r) == o ooy e
T Clom))

in TTC. There exists then a unique arrow ¢t : Q@ — T'C(_, Q) such that the diagram

T O )] =

TC(-}\ /

re(-Q)

commutes. It is easy to see that uC(t) is an isomorphism and therefore ®(uC(t)) is

an isomorphism. On the other hand we have that ®(Lang,,(t)) = ®(Q Ee C(.,2Q))

where v is the uniqu arrow that makes the diagram

c(,C)—1—q
N2
C(.,9Q)
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commute. Since the coequalizer of (r1,7;) in C is obtained by splitting ®(v), we have

that the coequalizer is ®(q) : C' — ®(Q). Since the square

C(.,r)

c(.,C)
C(_, 7’2) q
— @

is a pullback, applying ® we get the pullback

|

4

R
| e
C—5—%Q

That is, ®q is a quotient in C of the equivalence relation (ry,7,). We show that dq

is stable. Suppose we have an arrow ¢ : D — ®Q in C. Consider the pullback

P

' 4 C
S
D g oQ
in C, and the pullback
U e Q
Uy ’ "Y
C.,D)——cC(_,0
(4.6) (D) C(-9) S

in T'C. There exists a unique arrow ¢’ : C(_, P) — U such that the diagram
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commutes. Since the diagrams above involving P and U are pullbacks it can be

shown that the square on the right in the previous diagram is a pullback. Consider

the diagram

l?rz

in which every square is a pullback. Since the inner square in the commutative

diagram

c(.,S)
C(_. 7T2)
o, r Ce"e oy
C(_,71) q

c(.,P)

is a pullback it is not hard to see that the outer square is also a pullback. Therefore

the kernel pair of ¢’ is C(-,S)—= C(_, P). Since quotients of equivalence relations

are stable in TC and ¢’ is the pullback of ¢ along u, we have that the diagram

/

/

Cl:8) = C{P) L. yisa quotient diagram. Therefore P S, ®U is the quotient

of the equivalence relation S— P in C.

As a corollary we have

a

Proposition 4.10. [f (C,®) is a T-algebra then C is a pretopos. O
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Similarly we can show

Proposition 4.11. If (F,¢): (C,®) — (D, V) is a T-ALG morphism then F is an

elementary functor. O

4.5 2-Algebras Over CAT
4.5.1 CAT over CAT

Consider the 2-adjunction

CAT?"
Set-) { lSet("
CAT

whose unit nA : A — CAT(Set?, Set) is evaluation, that is nA(A) = evy and
nA(a) = ev, for every a: A — A’ in A, and whose counit :B : CAT(Set?, Set) —
B in CAT is also the evaluation B — C AT (Set?, Set). We consider the 2-monad
= (T,n, 1) generated by the 2-adjunction above. We have that
pA : CAT(SetCATSe".Set) Get) _, C AT(Set?, Set)
is such that pA(L)(G) = L(eve), pA(L)(c) = L(ev,) and pA(h)(G) = hevs for
every h : L — L' in C’AT(SetCAT(SetA’Set), Set) and every o : G — G’ in Set”.
Given a diagram I' : I — A we will denote the composition

-1 A T4 CAT(Set? Set)

by evr.

Proposition 4.12. If (A, ®) is a strict T-algebra then A is a complete and cocom-

plete category and @ preserves limits and colimits of diagrams of the form evr with

[': 11— A.

Proof. We have the commutative diagram

PR CAT Set#, Set)

N
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Now, A has split idempotents (see Remark 4.2) and by Theorem 4.6 we have that
A 1s complete and cocomplete. Let I' : I — A be a diagram. To obtain the limit

for I' in A we have to proceed as follows according to Proposition 4.6: First we

consider the limit cone (lzm evrﬂw:vn)[ in CAT(Set”, Set). To this we apply
I
. ¢ : : .

¢ and we get a cone (®(lim evr)—-ﬂ—I>F1)1 in A. From this one we obtain the
I

EVGr

cone (ev((im evp)(G) evr;); in CAT(Set?, Set). There exists then a unique

arrow v : eve(lim evp) — Lem evr such that for every I in I the diagram

€U¢(lzm evp) —— Bt § €Vdevp; = EVL]
Lim evr

commutes (compare with 4.4). We have that ®v : ®lim evr — ®Lim evr is an
I I

idempotent and the limit of I' in A is obtained by splitting ®5. It is enough

then to show that ®v is an isomorphism. To do this consider the unique arrow
. . A .

¢ : evlim evp — Lim evey, in C’AT(SetCAT(Set ’Set),Set) that makes the diagram

vy

ev(ﬁﬂl evr) Veury
(4.7) 1 80,y

commute. We chase ¢ around the commutative diagram

CAT(Set?, Set)

C AT (SetCAT(Set",5et) Get) C AT (Set”, Set)
| -
CAT(Set?, Set) A.

(4.8)
Observe that if G : A — Set we have
CAT(Setq), Set)(ev(m C'U]"))(G) = CU(M C'UI") O Setq)(G)

= ev(lim evp)(G 0 @)
= G(®(lim evr))
= (evelim evp)(G)
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Similarly we have that
CAT(Set®, Set)(lim eve,.) = lim evr
So applying CAT(Set®, Set) to diagram 4.7 we obtain the commutative diagram

€ve(lim evr) e o €W

CAT(Set?, Set) \ /

lim evr

That is C AT (Set®, Set)(¢) = 5. Therefore ®(C AT (Set®, Set)(¢)) = ®(5). On
the other hand it is not hard to see that uA({) = 1(lim evp and therefore P(pA(Q)) =
1¢(Liﬂ evp). That is ®(y) = 1d>(£irl evp- O

Proposition 4.13. If (H,¢) : (A,®) — (B,V¥) is a morphism of T-algebras then

H : A — B preserves limits and colimits.

Proof. Let I be a small category. Consider

i ¢
CAT(Set”, Set)

ar BE CAT(Set”, Set)!
CAT(Set”  Set) H

VB

H’] l C AT (Set” Set)!

¥ B I B
B = CAT(Set?, Set)! —p CAT(Set”. Set) -

It is easy to see that the middle and left squares above commute. Given ' : I — A

we obtain with the help of the coherence diagrams the commutative diagram

H(®(lim evr)) 227L pry

LPLZ.’_”@'UF\ Uy

U(lim evyr)

Colimits are done the same way. a

Notice that ¢ above gives the isomorphisms lim evr : H(limT) — Lim HT and
(¢lim evr)™ @ lim HT' — H(lim T) induced by the universal property of lim and
lrm on B.
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4.5.2 LEX over CAT

Similarly we can consider the 2-adjunction

LEX®
Setl-) l l LEX(_, Set)
CAT
and carry over the same argument. We obtain a 2-monad that we (also) denote by
T = (T,n, ). The corresponding proposition is
Proposition 4.14. If (A, ®) is a T-algebra then A has all limits and filtered col-
imits. Furthermore ® preserves limits of the form I—F—ALA——LEX(SetA,Set)

A
and colimits of the form J—Q~A—77—~LEX(SetA,Set) where J is filtered. If
(H,¢) : (A,®) — (B, V) is a morphism of T-algebras then H preserves limits and
filtered colimits. O

4.5.3 PRETOP over CAT

Consider now the 2-adjunction

PRETOP®*
Set!) ] l Mod(.)
CAT

and the generated 2-monad T = (T, 7, ). We have

Proposition 4.15. If (A, ®) is a T-algebra then A has filtered colimits and ® pre-

serves colimits of the form I—F*A—ﬂ-Mod(SetA). If (H,p):(A,®) = (B,VY)
is a morphism of T-algebras then H preserves filtered colimits. O

It is to be expected that in this setting we can give a pre-ultracategory structure
to any T-algebra (A,®) in much the same way as we have constructed limits and

colimits up to here. This is what we do now.
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We define the 2-functor W : T-ALG — PUC as follows. Given (A, ®) in T-ALG
then the underlying category of W (A, ®) is A and given an ultrafilter (/,4) define

Ulwae : A" — A as the composition

I
AT T4 prodisetry . pod(setd) 2 a.

where [U] denotes the usual ultraproduct functor of models. If (H,¢) : (A, ®) —
(B, V) is a morphism of T-algebras, then we define W(H,¢) = H together with the

natural isomorphisms

Al Ulwas)
H! I H
elU](nA)
B! /B.
Ulw(B.v)

The natural isomorphism [U](nA)! has the domain and codomain shown above due

to the fact that the diagram

A7) prodisetty —HUL L pod(sett)

H! (Mod(Set™))! Mod(Set")

B! (”B)IMod(setB)l U] Mod(Set?)

commutes on the nose. If 7: (H,¢) — (K,?¢): (A,®) — (B, V) is in T-ALG define
W(r) =7 : H — K. We have to show that 7 is a pre-ultranatural transformation.

[t is easy to see that
Mod(Set™)!

I
Aﬂé)——» Mod(Set?)! lMod(Set’)’ Mod(Set?)!

equals Mod(Set")!
H]
I
Al B B0 pod(set?)!

K
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and that
Mod(Set)
H\I
Mod(SetA)’Ml Mod(Set*) WMod(SetB)
iaals Mod(Set")

Mod(Set')!

Mod(Set?)! | Mod(Set™)! . Mod(Set?)! i Mod(Set?)
Mod(Set™)!
Since 7 is a 2-cell in T-ALG we also have that
Mod(Set")

Mod(Set*) T Mod(Set) Mod(Set?)

\_/

Mod(Set")
7
A

I B

o v

equals

Mod(Set™)

Mod(Set*) Mod(Set?)

Al e
It follows that ¢
K!
I} ol I

A \ITII/'B =" Al K B!

@l H lxp Y[Un B’

A¢[u1nA’B @1 /A—< v
H A kB
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That is, 7 is a 2-cell in PUC. This completes the definition of the 2-functor W.
Given a pretopos P define ®p : Mod(Set™4P)) . Mod(P) such that

(DP(M)(P) = /\/((evp)

for every M in Mod(Set™*¥)) and every P in P. It is easy to see that ®p(M)
is an elementary functor. If A : M — AN is a morphism in Mod(Set™4P)) define
®p(h)(P) = h(evp) for every P € P. Notice that the 2-adjunction

PRETOP®
Set-) l l Mod(.)
CAT

gives us the comparison 2-functor PRETOP®” — (T-ALG), and it is not hard to
see that this functor is such that P — (Mod(P),®p) for every pretopos P. The 2-

functor in the following definition is simply the comparison 2-functor PRETOP —
(T-ALG), followed by the inclusion (T-ALG); — T-ALG.

Definition 4.3. Let (Mod(.),®)) : PRETOP® — T-ALG be the 2-functor such

that for every 2-cell

in PRETOP we have that (Mod(-),®()) applied to it gives
(MOd(E)7 :)

(Mod(Q),®q)_ | Mod(r) (Mod(P), ®p)

™
\__’/
(Mod(E'), =)

In particular when P is the full subcategory of Set>® whose objects are the

finitely generated functors, where Set, is the category of finite sets, we have that

Mod(P) is equivalent to the category Set where the equivalence is given by ev;, :

Mod(P) — Set where in : Sety — Set is the inclusion. It is not hard to see that

® p defined above corresponds to the functor Vs, : Mod(Set>) — Set defined as
WUsestM = M(idser). This gives us the T-algebra (Set, Uses).
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Proposition 4.16. The functor W : T-ALG — PUC defined above is such that
W (Mod(P),®p) = Mod(P)

for any pretopos P. In particular W(Set, Vg.,) = Set.

Proof. Let (I,U) be an ultrafilter then [Ulw (Mod(P),¢p) is the compositon

Mod(P)’
Mod(P)! UL | o 1o sermedtryy:
(]
Mod(P) i Mod(SetM4(P))

If we start with a family (M;); in Mod(P)I we obtain the model ® p(I]; evar, /U) in
Mod(P). For any P in P we have

(I)P(H CUMi/Z/{)(P) = HeUMI/U(evp) == HeUM.(evP)/u = ]:[A/[tp/u

Therefore [U]w (Moa(p),op) : Mod(P)I — Mod(P) is the usual ultraproduct functor.
(]

In other words we have a commutative diagram of 2-functors

& (MOd(-)> (I)(_)) )
PRETOP T-ALG

Mod(-) 114

UG

Proposition 4.17. Given a morphism (A, ®) L) (B,V¥) in T-ALG we have
that the category (Set, \IJSet)(A'd’) is a pretopos and (Set, ‘Ilset)(H"p) is an elementary

functor. Furthermore, the corresponding limits and colimits are created by the forgetful
functor (Set, Us,;)(A®) — SetA.

Proof. We only do the finite limits to illustrate the point, the rest of the construc-

tions are done similarly. Suppose I' : J — (Set, Use;)(4?) is a diagram with J finite.
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Denote the image of J under I' by the pair (I'J,yJ). Then for any M in Mod(Set*)
we have vJ(M) : TJ(®M) — M(T'J). Consider the limit [zm I'J in Set*. We want
J

a natural isomorphism ~

Mod(Set?) —2+ 4

Mod(Se liTIl_/ FJ) MF']
J

Let M be an object of Mod(Set*) let yM be the unique arrow that makes the

following diagram commute

lim TJ(®M) L LJ(®M)
J
yM yJ M

M(lim TJ) — lim M(T'J) —% M(TJ)
J o

for every J in J, where the iso M(lim I'J) — lim M(T'J) comes from the fact
J, J
that M is an elementary functor. It is not hard to see that v is indeed natural,

satisfies the coherence conditions and that (lim I'J,7) is the limit of the diagram
ot
[':J — (Set, Vg ) AP, a

We can then make the following definition

Definition 4.4. Let P denote the 2-functor
P =T-ALG(__,(Set,Vs)): T-ALG - PRETOP

We define now a new 2-monad S = (5, ¢, v), this time over T-ALG.
In view of proposition 4.17 we can regard the category Set as a schizophrenic
object in the categories PRETOP and T-ALG. This gives rise to the 2-adjunction

PRETOP?
P [ } (Mod(_), (I)(_))
T-ALG
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with unit £ : id o1 — (Mod(.),®(,) o P such that for everya: A — A’ in A,
é(A>(D)(A) = (BUA,’)’(A,(I’)) where

Mod(Set*) & A
Mod(Set**%) , V(Ay £(A, )
P(A,D)
Mod(Set ) iy Mod(P(A, ?))

is such that for every M in Mod(Set*) and (H, ¢) in P(A,®) we have
(A, Q)M(H, ) = oM

and £(A, ®)(a) = ev,, and counit ¢:Po(Mod(.), ®()) = idprEeTOPr such that for
every pretopos P, (P : P — P(Mod(P),®p) is (P(P) = evp and (P(p) = ev, for
every p: P — P’ in P.

This 2-adjunction induces the 2-monad S = (5, ¢,v) where S : T-ALG — T-ALG
is the composition

Mod(.), ()

T-ALGL PRETOP* ( T-ALG

€ 1s the unit and v(A, ®)(L)(H, ) = L(evy) for every
L in MOd(P(MOd(P(A,@)),@‘p(A‘q))))

and (H,p) : (A, ®) — (Set, Vs) in T-ALG.

We consider the 2-category S-ALG of strict S-algebras and homomorphisms of
S-algebras. This category has the same description given in the previous section for
T with S in place of T' and T-ALG in place of CAT'. For later reference we explicitly
describe this category. An object of S-ALG is of the form ((A,9),(0,8)) or simply
(A,®,(0,0)) where (A, ®) is an object of T-ALG and

(6’ 0) : (MOd(P(Av (D)), (I)P(A,Q)) = (Aa ?)

makes the corresponding diagrams for an S-algebra commute. If we have another
S-algebra (B, ¥, (X,)) a morphism is ((H, ¢),s) : (4,,(6,0)) — (B, ¥, (X, x))
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where (H,¢) : (A, ®) — (B, V) is a morphism in T-ALG and s is a natural trans-

formation
(Mod(P(A,®)),Ppa,e)) ©.6) (A, D)
(MOd('P(H,Lp)),:) / (Hasp)
(Mod(P(B, V)), 5 (5.4)) (B, )

X,X)

that satisfies the usual coherence conditions. s being a 2-cell in T-ALG means that

Mod(SetMed(F(B.1))

Mod(setMod(”P(H,w)))/' N/I?d(SetX)
Mod(SetMed(P(4.9)) Mod(Set?) Mod(Set?)
Op(ag) | Mod(Set®) ™ , d(SetA) Mod(Set™) |y
y (I)L /
(4.9) Mod(P(A,d)) 0 A 17 B
equals
(4.10)
P(H.0)
Mod(P(A,® B ) Mod(P(B,¥ Mod(Set")
Mod(SetMed(F(4.9)) Mod(SetMdP(BY))y ——— 2 Mod(Set?)
(DT’(B\II l
Mod(P(B

®p
P(A.9) MOdH/ \"/ ]
Mod(P
@ /

A 2-cell 7 : ((Hy),s) — ((K,¥),t) : (A,9,(0,0)) - (B,Y,(X,x)) is a 2-cell
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7:(A,®) = (B, V) in T-ALG such that
Mod(P(K,))
(Mod(P(A, ®)),%pa4) _ | Mod(r) (Mod(P(B,V)), ®p(p,v))
(©,0) Mod(P(K,v)) ? (X, x)
(4.11) (4,2) (H,¢) ()
equals
(Mod(P(A, @), ®p (a4 ) 24P A, YN Mod(p(B, v)) T
(e,m[ &y Y ,(X,x)
(A,9) @ (B, ¥)
(4.12) (o)

Next we define a functor'Z : S-ALG — UC. First consider the composition

7
s-aLc-Lerare Y. prc

where U denotes the forgetful functor and W was defined above. Given an S-algebra
(A,9,(0,0)) the underlying pre-ultracategory of Z(A, @, (0, 6)) is W(A,®). Let G

be an ultragraph, & and ! nodes of G and 6 an ultramorphism

UD(G, Set) | 6 Set

\/

(A}
on Set. We want to define 6z(4,0,,0)

€V

UDEW AN | Sanniom >

ey

A.
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Let D € UD(G,W(A,®)). Define D : P(A,®) — UD(G, Set) such that
DHp)=HoD:G— A

and 5(7’) = 7D for every 7 : (H,p) — (K,¥) : (A, ®) — (Set,Vs.;). We have
to show that H o D is an ultradiagram. Let 3 € G®. Since D is an ultradiagram
we have an isomorphism D(3) — [Uplwa,e)((D(9s(2)))1,) and therefore we have an

1somorphism

- . 1
H(D(8)) =~ H(IT;, D{9s(i))/Us) 222411, H(D(g5(6))) /4o

Next we have to show that 7D is a morphism of ultradiagrams but it follows easily
from the fact that W (r) is a pre-ultranatural transformation that the right hand side

square in the diagram

I
H(D(8)) —— H(IL1, D{gs()/ths) LY A1 H(D(g5(i))) /s

7D(B) 7(I11, D(95(2)) /Us)) I11, 7(D(g5(2))) /Us

K(D(8)) —— K(I11,D(g5(i))/Us) [Tz, K(D(g5(2)))/Us

YUsln A
commutes while the left hand side square commutes by the naturality of 7. We have

now an easy lemma.

Lemma 4.18. The functor D: P(A,®) - UD(G, Set) is elementary.

O
Consider the diagram
eV
D /’\
P(A,®) UD(G, Set) b Set
(A

Notice that the top composition is evp(x) and the bottom one is evp(y. Since the
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diagram
A D
(4,0) A2 (Mod(P(4,8)), pa0)
vd(a,0) 0
(A, @)
commutes we have
D(k) = ©(evi 0 D) 6(sD) O(evi0 D) = D().

Define 8z(4.0,0.0)(D) = O(6D).
Lemma 4.19. 5Z(A,d>,(@,9)) s evy — eyt UD(G, W(A,®)) — A defined above is a

natural transformation.

Proof. Let d: D — D' : G — W(A,®) be a morphism of ultradiagrams. We can
induce then the natural transformation d : D — D' : P(A,®) - UD(G, Set) such

that d(H,p) = Hd. Consider

—

D EVg
P(4,9) _|d > UD(G,Set)_|s > Set.
D/ (A

This gives us a commutative square

—

evkﬁ ﬂ’ evlﬁ
evdel L evla?

Y] 3Vl
evi D' —= ey D
oD’

in Mod(Set”“?®). Notice that evid = evg and therefore O(evgd) = dk. Similarly

~

O(evd) = dl. Applying © to the square above we obtain

) D
D(k) Z(A,9,(0,6)) D(i
dk dl
D'(k) D'()

0z(A,0,(0,0) D’ 0
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With this definition of 6z( A, ®,(0,0)) we have that Z(A,®,(0,0)) is an ultra-

category

Proposition 4.20. For every morphism ((H,¢),s): (A, 9,(0,0)) — (B, V¥, (X, x))
in S-ALG we have that the pre-ultrafunctor H : W(A,®) — W(B,V¥) is an ultra-
functor H : Z(A,9,(0,0)) - Z(B,V¥,(X,x))

Proof. Let ¢ : evy — ev; : G — Set be an ultramorphism. We have to show that
Héz(a,8,0,6) = 6z(B,v,x,x)UD(G,W(H,p))

That is we want to show that H(@(éﬁ)) = X(él-/[b) forevery D e UD(G,W (A, d)).
Observe first that the diagram

commutes. Then §HD = 55”P(H,Lp). Using the naturality of s we obtain the

following commutative diagram

H(0(evi D)) —~2%L2. ¥ (c0, DP(H. o))
H(O(6D)) lX(&ﬁD)
H(O(evD)) — X (evyDP(H, ¢))

S eV

Using the fact that s satisfies the coherence axiom involving the unit and that ev,D =
evp(k) we have that sevkﬁ = 1dyD(k) O

Define Z((H,¢),s) = H.

It is clear that for a 2-cell 7 : ((H,¢),s) — ((K,%),t) we have that 7 : W(H,¢) —

W(K,®) is a pre-ultranatural transformation, therefore
v Z((H,p),5) = Z((K,),1)

is an ultrafunctor. Define Z(7) = 7.
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This completes the definition of Z : S-ALG — UC. So we have a commutative

diagram of 2-functors

zZ

S-ALG uc

T-ALG PUC

W
where the vertical arrows are forgetful 2-functors.

We obtain a comparison functor PRETOP — (S-ALG), whose composition
with the inclusion (S-ALG); — S-ALG we call

Mod( ),®,(0,=)) : PRETOP” — S-ALG.
(2 (00

It is easy to see that for every pretopos P, every model M in Mod(P(Mod(P),®p))
and every P in P we have that © p(M)(P) = M(evp)

Proposition 4.21. The functor Z : S-ALG — UC is such that for every pretopos
P we have Z(Mod(P),®p,(Op,=)) = Mod(P)

Proof. By Proposition 4.16 we already know that the underlying category of

Z(Mod(P),®p,(0p.=)) is Mod(P). So all we have to check is the ultramorphisms.
Let 6§ : evy — ev : UD(G. Set) — Set be an ultamorphism and let D be an
ultradiagram in U D(G, Mod(P)). Then for every P in P we have

82(Mod(P).0p ©p.=) D(P) = Op(§D)(P) = §D(evp) = é(evp o D) = §D(.)(P).

O
As before, when P is the full subcategory of Se

generated functors we have that (Mod(P),®p,(0Op,=)) is essentially

t5% consisting of the finitely

(Set, ¥ser, (Xset,=))

where Xgey = eviqg,,. As a consequence of the above proposition we have

Z(Set, \I’Sety (XSet, :)) = &
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Proposition 4.22. For every object (A, ®,(0,0)) the category
S"ALG((Aa o, (67 0))* (SEts \IlSetv (XSet~ :)))

s a pretopos and for every morphism

(4,8,(0,0)-:2:9) gy (x )

in S-ALG the functor S-ALG(((H,¢),s),(Set, Pset, (Xset.=))) is an elementary

functor. Furthermore the corresponding limits and colimits are calculated pointwise.

Proof. We do binary coproducts to illustrate the point, all the other constructions

are similar. Suppose we have
(H,¢,8), (K, ¥,t): (A, ,(0,0)) — (Set, User. (Xset, =))
in S-ALG((A,®,(0,0)),(Set, User, (Xset,=))). Consider first the coproduct
(H,o)U(K,¥) = (HIK,¢')
in T-ALG((A, ®),(Set, Vse)) where ¢’ M is the composition
(HIIK)(®M) = H<I>M]_[KCI>MM MH]_[M]\'—z— M(HIIK)

for every M in Mod(Set?). We want to define s’ in

0.,0)
(Mod((Set, Uset)4?)), &p(4.4)) Ll (A, @)
Mod((Set, U g, ) HLIE)) o X set
(Mod((Set, User) !5 5e)), p(seq ys,,)) HIE. (Set, Vseq)

Given M in Mod((Set, Vs.;)(4?)) define s’M as the composition

HOMIIKOM MM j g oMK, %) M((H, )LI(K, )

I I
(HLIK)OM M(HLIK, ¢')
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[t is easy to see that s’ is natural. We show now that the composition corresponding

to diagram 4.9 and the composition corresponding to diagram 4.10 are equal. Let £
in Mod(SetMdP(A®)) then from 4.9 and 4.10 for s and t we have that

£(s) 0 (L o Set®) o HO(L) = sOp(a0)(L)
L(t)o(LSet®) o KO(L) = tPp(a.s)(L).
With these two equations it is not hard to see that
L(s") o' (L o Set®)o HIIKH(L) = s'®p(a.4)(L)

Therefore s’ is a 2-cell in T-ALG. We have a coproduct diagram

) v s VR .
(H,p) =2~ (HIIK,¢") ~E~ (K, )

in T-ALG. To show that iy : (H,p,s) — (HIIK,¢’,s') is a 2-cell in S-ALG all we

have to show (according to 4.11 and 4.12) is that

HoM M e, ) 288 11K, o)
equals
HoM-HO. giikyom = Homiikom MM iy vk )

~

M(HLIK, ¢')

for every M in Mod(P(A, ®)), but this is readily seen to be the case. The universal

property also follows easily. a



Chapter 5

Algebras Over Los Categories

In 4.5.3 we saw how to obtain pre-ultracategories from algebras over CAT, that is,
we constructed pre-ultrafunctors with the help of the structure map. We saw as well
how to obtain some of the ultramorphisms. We needed however a second monad
to be able to introduce general ultramorphisms. In this chapter we avoid the first
monad by working in the category £os. Notice that we introduced this category
with the express purpose of dealing with ultraproducts. With the category £os we
also obtain some of the ultramorphisms, however we do not see how to get the general
ultramorphisms. In this short chapter we define a monad over £0s and show how
we can obtain the general ultramorphisms for algebras over this monad. On the one
hand this simplifies the notation since we are dealing only with one monad and the
rest of the structure is given by the Top-indexing, on the other it provides a nice
setting in which, we hope, the other side of Makkai’s duality can be proven, namely
characterize those categories that are of the form Mod(P) for a small pretopos P.
Notation Given a Top-indexed functor F' : 4 — B and a discrete topological

space | we denote by F!: AT — B’ the corresponding F for the topological space I as
I F!

opposed to the product functor []; A’ [1; B! that we denote by F! : AT — B/,

5.1 Los Categories and Pre-Ultracategories

We define first a functor £o0s — PUC. Given a category A in £0s we construct a

pre-ultracategory as follows. The underlying category is A = A!. Given an ultrafilter

120
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(I,U) denote by f : I — [y the embedding and define [] 4 as the composition

Al =t g ¥ 4

where the first arrow is given by the fact that A is in Top-IND (definition 3.11). If
F:A— Bin £os consider F! = F: A — B and define the natural isomorphism
[U, F] as the pasting

LAyt S T
FI FI Flu F
4 I ol
B Bl ———Bl— B

where the two natural isomorphisms on the left are given by the fact that F'isin Los
(definitions 3.11 and 3.14) and the one on the right is given by F' being Top-indexed.
[t is easy to see that this construction does define a functor Los —» PUC.

If P is a pretopos then it is clear that the pre-ultractegory we obtain as the image
of MOD(P) under this functor is Mod(P), as a particular case we have that the
image of SE7 is Set.

5.2 Algebras Over Los Categories

From Proposition 3.13 and the remark after the proof we have a 2-functor
Los(_,ST): Los— PRETOP™.

On the other hand we have the 2-functor

MOD(_) : PRETOP® — Los.

We obtain a 2-adjunction

PRETOP®”
Los(.,SET) [ l MOD(.)
Los
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whose counit eP : P —» £os(MOD(P),SET) is P — evp for any pretopos P and
P in P. The unit nA: A - MOD(Los(A,SET)) is such that for any A € Los
any topological space X, any A in A¥ and any 7: F — G in Los(A,SET) we have
(nA)X(A)(F) = FX(A) and (nA)X(A)() = 7%(A). It is easy to see that for every
A in AX the functor nAX(A) : Los(A,SET) — Sh(X) is elementary. We have to
show that for every A in £os the functor nA is indeed in £o0s. We show first that
it is Top-indexed. Given a continuous function f : ¥ — X we need a transition
isomorphism nAY o f* — f~onAX. Let A in AX and F in Los(A,SET) then we
want an isomorphism f*nAX(A)(F) — nAY (f*A)(F). That is f*FXA — FY f~A.
Since F' is Top-indexed we have an isomorphism f*FXA — FY f*A that we can use
to define the isomorphism we are looking for.

It is easy to see that n.A is Los. Assume f:Y — X is ultrafinite in Top, we need

to show that

unit nAX f,

o fn AY counit

fofnAX fu s fun AY f fan AY

is an isomorphism. Take 4 in AY and F in Los(A,SET) and if we apply the above

nAXf,

composition at A at F' we obtain

unit FXf, A f.FY counit A

FXf.A ff FXf. A= fFY 1A fnFY A

that is an isomorphism since F' is Los.

We obtain therefore a 2-monad T' = (7,7, 1) over £os. Consider the category
T-ALG of T-algebras. We define now a 2-functor T-ALG — UC. Let (A, ®) be a
T-algebra, consider first the pre-ultracategory A constructed from A as in 5.1. Notice
that for any ultragraph G composing with nA' : A — Mod(£o0s(A,SET)) induces a
functor UD(G, A) - UD(G, Mod(£o0s(A,SET))). If we have an ultramorphism

EVk

UD(G, Set) @ Set

(A7)
over Set define 64 = ®' 0 dppa(eosa,ser)) 0 UD(G,nAY)
Lemma 5.1. If (F,¢) : (A,®) — (B,V) is a I-cell in T-ALG then F: A — B is

an ultrafunctor.
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Proof. Simply put the following diagrams together
UD(G,nA
UD(G, A) (G14') UD(G, Mod(S0s(A, SET)))
UD(G,F) UD(G, Mod(Los(F,SET)))
UD(G, B UD(G, Mod(£os(B,SET
(G, B) UD(G. 15 ( od(Los( )
EVk
UD(G,Mod(Sos(A,SET)))@ Mod (€ os(A, SET))
€EVy
UD(G, Mod(£os(F,SET))) Mod(Los(F,SET))
eV
UD(G, Mod(Sos(B,Sé‘T)))@ Mod(Los(B, SET))
and evy

Mod(Los(A,SET)) —2 . 4

Mod(Los(F,S5ET))

MOd(SOﬁ(B,S(‘:T)) T B
a

Lemma 5.2. If 7 : (F,¢) — (G,?¥) : (A,®) — (B,V) s a 2-cell in T-ALG then

7:F — G: A— B is an ultranatural transformation. O

We obtain a functor T-ALG — UC. Notice that we obtain the following com-

mutative diagram

T-ALG ucC
Los PUC

where the vertical arrows are forgetful functors.



Chapter 6

Indexed Categories of Coalgebras

In this chapter we generalize a result from [11] namely that there is an equivalence

between Top-ind(SET,SET) and F1ilt(Set, Set) given by
F— F!

where F'ilt(Set, Set) denotes the category of functors that preserve filtered colimits,
and use this generalization to show that if F': MOD(P) — SET is a Top-indexed
functor then F!: Mod(P) — Set preserves filtered colimits.

We consider a special kind of Top-indexed categories, namely those that can be
defined at every X as a category of coalgebras of a cotriple on the category A for
some fixed category A (see below). The Top-indexed category SE7 defined in chapter
1 is an instance of these Top-indexed categories we will consider now. In particular,
for every topological space X, Sh(X) is equivalent to a category of coalgebras for a
cotriple defined over SetX|. To be able to define these categories we need products

and filtered colimits in A. We start with the definition of the cotriples we need.

6.1 The Cotriple G*

Definition 6.1. Let X be a topological space, A be a category with products and
filtered colimits. We define the cotriple GX = (GX, X, 6X) over A/ as follows:
Define GX : A®l — ARl such that (A,)zex — (im [1Ay)zex and (fz) —

(l' Hf) Uszy€eU
mm .
U_a’:ry EUy

124
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Define ¢X : GX — 1 such that (¢X(A,)), is the unique map that makes

lim T4, (E(A:)s

—_—
UszyeU

w /z
Ay
yevu
commute.
Define 6% : GX¥ — GXGX such that (6%(A.)), is the unique map that makes
I1 Ay [ lz_".L I A
yGL] yEUVB[:EV
bm I A, bm T[] Lm ] A:

U3zyeU (6X<AI>)1- UszyeU V3y gV

commute, where the top arrow is the unique arrow that makes

InmA__ 1 lﬂT,l ITA:

yevu YEU VoyzeV
ZN /y
Lim I A.
V3yzeV

commute.

It is easy to see G is indeed a cotriple.

6.2 Indexed Categories of Coalgebras

Now we are ready to define a Top-indexed category.

Definition 6.2. Given a category A with products and filtered colimits define the
Top-indexed category A as follows:

For every topological space X, A% is the category of coalgebras for the cotriple
G*.

For every continuous function f : X — Z and every coalgebra

(A: =5 lim 1 Au)

W3zwew
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in AZ define

F(A: D tm TTAL) = (A 23 im [T Ay — lim ] Ay,)

—_—

W3zweWw 3 frz weWw UszyelU

where the last arrow above makes the diagram

1 A, __w hm [1 Au
weW

W3 frwew

4
H Afy : lim HAfy

vEFTIW lf-lW UszyelU

commute. We call A the Top-indexed category of coalgebras over A.

[t is easy to see that we have defined a Top-indexed category. Furthermore, all the
coherence axioms on the definition of an indexed category turn out to be equalities
in this case. That is A is a strict Top-indexed category.

We will be intrested in the case where A = Set® for a pretopos P, in this case
we denote A by SETF. Notice that when P=1, we obtain the Top-indexed category
SET.

6.3 Filtered Colimits and Absolute Equalizers

It is shown in [11] that the category Top-ind(SET,SET) of Top-indexed functors
from SET to itself is equivalent to the category F'ilt(Set, Set) of filtered colimit
preserving functors from Set to Set. It is our intention to generalize this result
to the category Top-ind(A,B) where A and B are the Top-indexed categories of
coalgebras over A and B respectively. However, to be able to do this we need more
structure on the categories A and B. See proposition 6.9.

Take a category A with products and filtered colimits. If D is a small directed
poset, and H : D — A~ isa diagram, denote Hd by

Hyd

hod
Hod ——
h.d

1
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for d € D. Using ideas from [12] we have that one of the properties we need is the

following:

Definition 6.3. Let A be a category with products and filtered colimits, we say
that filtered colimits commute with pointwise absolute equalizers if for every small
directed poset D and, every diagram H : D — A:" such that for every d € D, Hd
has an absolute equalizer e4 : Ey — Hod in A, and the pair

latig teig

d

Lim Hod lim Hyd
d

Lim hid

d
also has an absolute equalizer in A, we have that the diagram

Lim ey lim hod
lim Ey—— lim Hod — Hyd
d d

lim hyd
d

is an equalizer diagram in A.

6.4 Some Topological Spaces and Their Associated
Coalgebras

Here are some definitions of topological spaces and continuous functions that we are
going to need later.

Recall from section 3.5 the construction of Xp for any small directed poset D.
Consider the topological space X}, obtained form Xp by adding a point co not in Xp
and whose opens are the empty set and sets of the form U U {co} with U a nonempty
open of Xp. The inclusion h: Xp — X is clearly continuous.

Let (I,F) be a filter. Define the topological space Ir whose set of points is
I'U {ar}, with ar ¢ I and the topology given by U C I U {ar} open iff ar € U
implies that U — {ar} € F.

In the case when (I,F) and (/,€) are filters with £ C F we have a continuous
function hre : Ir — Ig such that h restricted to I is the identity and hrs(ar) = as.

If J C I we denote by S(J) the principal filter generated by J. That is, S(J) =
{K CI|K > J}
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We will denote Sierpinski’s space by S, that is, S = {0,1} and the only nontrivial
open of S is {1}.

If j € J C I define hj; : S — Is(y) such that h;;(1) = j and h;;(0) = as(y

Consider the Top-indexed category A defined as above. Let’s take a look at the
category AX for X the spaces we just defined, and at the transition functors induced
by the continuous functions also defined above.

First of all, if we take the topological space 1, we have that A! is essentially A.
When we have a Top-indexed functor F': 4 — B where B is defined over a category
B as above, we have F'! : A — B. Sometimes we write F instead of F'' when it does
not lead to confusion.

It is not hard to see that AXP is equivalent to AP.

It is clear that A% is isomorphic to A~ .

AlF is equivalent to the category whose objects are maps A,, —— Lm [TAj,

JEF j€J
where A,, and the A; are objects of A, and whose morphisms .

[ (Aay = lim T1A;) = (Bap =25 lim 1 B;)

JeF,3eJ JeFjeJd

are families of morphisms (f,, : A, — Bas, {fj : Aj = Bj}s) such that the diagram

Al T lm JIA;
TEFjed
e Lem TI1 f;
TE F5E J
B, line - 11 B;
JeFjelJ

commutes. We will use this description of AF systematically. In the case where

F = &8(Jo) for some Jo C I we have that tm  [] A; =[] A;. Then an object of

J €S(Jo) ;€7 1€ Jo
A'st0) with the description given above is a pair (Asw,) — IT Aj, (Ai)1).
1€ Jo

Now, consider the continuous function hre : Ir — I¢ defined above, we have
that A%, : A% — A7 is such that (A,, —— lim []A)) — (As, — lim [1A; —

JEE €I JeEE eI
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lim T] A;) where the last arrow makes the diagram
TEFs€J
i ' A
I 4 —1—52, 04
ZE\
lim T A;
JeFr,eJ
commute for every J € £.
For hjj, : S — Isw,) we have that Ajj (Aag,, — [T Aj (A1) = (Aagy,
™ € Jo
[T A —> A, ’
JEJo

6.5 The Category A0

When we have the topological space X5 with D a small directed poset the situation
is a little bit less trivial. It is here that we use the property that filtered colimits
commute with pointwise absolute equalizers. Define L : AP — A5l such that

L({Ad E Ad’}d—od’) = (l_llﬂ Ad,<Ad>d)a and if {fd} . {Ad E Ad'}d—»d' — {Bd M
d

Ba}a—a then L({fa}) = (Lm fu, (fa))
Lemma 6.1. [f A is a category with products and filtered colimits such that filtered

colimits commute with pointwise absolute equalizers, D a small directed poset then
the functor L : AP — AXD! defined above is cotripleable.

Proof. We use Beck’s tripleability theorem (see [13] for example). First, we need a
right adjoint. Define R : A5l 5 AP gych that R((Aw, (A4))) = {Ax xd]:[ _;4dl/ L

Ae X T1 Agn}da—ar, where pggr = Ay X projas and projzey makes the diagram
d” o dl

[T Agr _Proda [T Agn

la,,

commute. If (foo, {fa)) : (Aeo; (Aa)) = (Boo,y (Ba)) then R(foo, (fa)) = {foo X I1 Ja}-
It is easy to show that R is right adjoint to L. Suppose {4}, {ga} : {Ad — Aa}ia—a —
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{Bi = Bu}a—a is a parallel pair in AP such that L({f;}), L({gs}) has an absolute

equalizer
: o (tim fu, (£2)

(Ew, (Ea)) (lim Aq, (A4)) (& Ba, (By))-

(h;:,ngdv <gd>)

Projecting from A!XP!, we obtain, for every d € D, an absolute equalizer

€d
E, AJ_LL_’Bd

9d
and another absolute equalizer ,
ll_”l fa
Eon a
Eoo l_z_nz Ad lz_nz Bd.
d lZ_TTl gd d
d

Therefore, for every d — d’ in D we can induce an arrow E; — E such that

€4

Ey Ay

Ey Aw

€y

commutes. It is easily seen that we obtain an equalizer diagram

' ed} {fd}

‘ {Ey — Ed'}d—d'{—>{z4d — Au }dmar (o] {Bi — Buy}a_a.
9d

\

Since filtered colimits commute with pointwise absolute equalizers we obtain that L

I preserves these equalizers. It is clear that L reflects these equalizers. Therefore L is
cotripleable. O

If we look at the cotriple generated by the adjunction L 4 R of the lemma we

obtain G¥5, which means that the categories AP and AXD are equivalent. Now,

the comparison functor ®p : AP — AX5 is such that dp({Ags 24 Ad}dar) =

4 ] x lZ_TTl (Zd X (Jdd’>)

(lim Aq lim Ag x lim (lim Ag x T[T Aj),(As ~*5 [] Ag)), and
d d d d d" — d d’ —d

®p({fa}) = (im fa,(fs)). The quasi inverse ¥p : AX5> — AP is a lot simpler,
d

Up(Ae = lim [ Ay (As— A X ] Aa) = {Ag > A x[] Ay —% As}aea.
d —d

l U deU d=d
I
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« Corollary 6.2. With the same hypotheses and notation as in lemma 6.1, the diagram

axg —2 . 4o

A

commutes, where W p is the functor just defined.

It is easily seen that the functor K : AP — AM>l gych that K({A; 2%
Aw}a—a) = (A4)p is also cotripleable and defines the cotriple GXP. Thus, in view of
the previous corollary we have that the categories 4XP and AX5 are equivalent. In
the particular case when D = 2 we have that in X, 1 and oo can not be distinguished

from each other so and we will feel free to replace AXZ by AS.

6.6 The Functor (_)':Top-ind(A, B) — Filt(A, B)

From now on we are going to suppose that A and B are categories with products and
filtered colimts such that filtered colimits commute with pointwise absolute equaliz-
ers and that A and B are the Top-indexed categories of coalgebras over A and B

respectively.

Lemma 6.3. If G : A — B is a Top-indexed functor then there exists a strict Top-
indezed functor F : A — B isomorphic to G (in Top-ind(A,B)).

Proof. Let G : A — B be a Top-indexed functor. For any X in Top and any
z € X, we have a continuous function z : 1 — X, and a natural 1somorphism

x . T . .
z*GX — Gz*. Therefore, given (4, —= lim [TA,) in A%  we have a natural
UszyeU

isomorphism z*G*X ((r,)) =, GA,. Define FX : AX — BX such that FX((r,)) is
(GA, = z°G((1:)) = im T1y*G((7.)) — bm [IGA,). It is not hard to show

UszyeU UszyelU
that we obtain a coalgebra in this way and that the functor F is strict and isomorphic

i to G. O
t

In view of this theorem we will assume that our Top-indexed functors are strict.



132

Lemma 6.4. [f FF: A — B is a Top-indezed functor, then the square

AS \IIZ A2
FSJ iF'Z
BST32

commutes up to isomorphism.

Proof. We are using A® instead of AX? . Now, consider the continuous maps
1

1 8 S. These maps induce the diagram

—_—

BS \I}z B'Z
N:'S F2
AS \I'Q A‘Z
el o oo |2d| |6,
Ol i (11 éo |2d| |6,
A I A
s A
/ F N
B ] B
B

in which it is easy to see that the front and back faces commute sequentially, and the

sides commute as well. Then it is not hard to see that the top commutes as well.

Lemma 6.5. For any directed poset D, the following diagram commutes
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Proof. Let d — d’ be an arrow in D, consider the functor agy : 2 — D such that
(0 = 1) — (d — d'). Consider the continuous function B4 : S — Xp, such that

B(0) = d and 3(1) = d’. Then it is easy to see that we have a commutative diagram

FS| FX5 FP | 2
BXI+> \IJ_D> BP
’4;/ B%dd
B 7, B?

a

The following proposition is an immediate corollary of these lemmas.

Proposition 6.6. If F : A — B is a Top-indezed functor, then the functor F' :
A — B preserves filtered colimits.

Proof. It is enough, see [1], to show that F preserves directed colimits. Consider

the diagram
BX = B2

O
The proposition allows us to define a functor ( ) : Top-ind(A, B) — Filt(A, B)

such that F +— F! and 7 +— 7! for every
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in Top-ind(A, B).

——

6.7 The Functor (_) : Flt(A, B) — Top-ind(A, B)

We define now a functor in the other direction. Given H € Filt(A,B) and a
topological space X, we define HX : AX — BX such that

HX((A; 25 lim T1A,)) =

———
UszyeU

(HA, =5 H(lim T1A,) = lim H(IT A,) — lim [[HA,),

UszyeU U3sz yevU UszyeU
where the last arrow is the unique one that makes

H(TT A,) U, Lim H(IT A,)

N c U
Hﬂ'/
HA,
S
1 HA,—— lLim [1HA,

yeEU 284 UdzyeU

commute, and ﬁ((fz)r) = (H fz):. It is not hard to show that we obtain coalgebras
and coalgebra morphisms with the above definitions. H turns out to be a strict Top-
indexed functor. We will show that, with the proper conditions on A and B, the
functors defined above give an equivalence of categories. Before the proof we need

some lemmas.

6.8 The Ultraproduct Transition Morphisms

Suppose F': A — B is a Top-indexed functor. Let X be topological space. For every
r € X we have the continuous function z : 1 — X that sends the only element of 1
to x. This function induces the following commutative diagram

*

AX —E— 4
| E
BX — B.
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If we start with a coalgebra (A, — lim []A,) in A* we have that

UszyeU
‘E*(FX((AI - h_"." HAy))) = FI(AZ)-
Uszy€eU
This tells us that FX((A; = lim [] A,)) is of the form -
Us3zyelU

(F'A, — im TIF'A,).

UszyeU
In particular, when we have an ultrafilter (/,G) and and a family (A;); in Al we

obtain the coalgebra

% 1 .
bm [[A; — Lm [IA;,
JegjreJ Jec,eJ

in A’e. Then

Flo(lim TTA; —lim [1A): F'(lim T1A) — lm [1F'A.

Jeg, e JegjeJ Jec,eJ JEGC EJ

We call this morphism ypg(A;);. It is not hard to see that ygg defines a natural

transformation Lim IT ()
Aj JecseJ A
(Fl)l YF¢ !
1
Lm TT (2)
TECs€eJ

Lemma 6.7. If F': A — B is a Top-indezed functor then for every ultrafilter (1,G)

we have that

Flo(A,, < lim T1A;) = F(Au,) "2 Flim T14;) 2% lim [IFA;.

JegjieJ Jeci e JegjreJ

Proof. Given A,, —— lim [] A}, consider the morphism

—_—

JEgsied

A a Lbm [T A;
Te€ciel

o lim []1a,

im [lA; —— lim ][4,

JecieJ JegyreJ

in A% and apply F. O
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6.9 Reduced Products and Ultraproducts

Finally, we need a condition on B. Given a filter (I, F), define Ux = {G|G is an
ultrafilter on I and F C G}.

Definition 6.4. We say that ultraproducts determine reduced products in B if for
every filter (I, F) and every (B;); € B’ we have that the family {lim [] B; .t
JeFy3eJ

lim T B;}ceu, is jointly monic, where ixg makes the diagram
Jegjyed

1, B; — . lim IIB;

JeFiyelJ

N,

Lm TIB;

——
JE€Gie
commute for every J € F.

Using the fact that for every filter (1, F) we have that F = Ngeu, G, it is not hard

to prove that the condition above is true for the category Set.

Lemma 6.8. If in B reduced products are determined by ultraproducts and F : A —

B is a Top-indezed functor, then F is determined by the natural transformations yrg
for all ultrafilters (1,G).

Proof. Let (I,F) be a filter, and G € Ur. Now consider F' : A — B, and the
continuous function hgr : Ig — Ir defined after definition 6.3. We have then that

the following diagram

e
Fiz| | s
Blr ——— Blo
hgf

commutes. Following the image of an arbitrary A,, — lim [[A; we have that
JeEF eJ
; iFG . . - Fi;
Fls(A,, 2 lim T1A; =5 lim [1A4;) is equal to the composition FA,, A
JeFyed JegG e
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lim Tl FA; 159, lim T[] FA;. Or put another way, we have that

JeFyeld JegreJ

pa,, FU7600) Fliim 114;)

JegreJ
Fi7 (o) YFG
bm [IFA; — lim T[] FA;
TEFs € LFg JEC el

commutes. Since the family {irg}oeu, is jointly monic, we have that F#(o) is
determined by the natural transformations ypg with G € Ur. Now, given a topological
space X, and a point ¢ € X, let ] = X —{z} and F, = {J C I|JU<z is a
neighbourhood of z}. F, is afilter on / and there is a continuous function A : Ir, — X

such that h|; is the inclusion and h(ar,) = z. Then we have a commutative square

h*

A Al
FX | Fin
BX h* B Ifl

Following the image of an arbitrary coalgebra we see that F'X is determined by

{Flf’ }IEX- O

6.10 Top-ind(.A4, B) equivalent to Filt(A, B)

Proposition 6.9. Let A and B be categories with products and filtered colimits such
that directed colimits commute with pointwise absolute equalizers, and such that re-
duced products are determined by ultraproducts in B, then the category Top-ind(.A, B)
is equivalent to the category Filt( A, B) of functors from A to B that preserve filtered

colimats.

Proof. We have already defined the functors ( )! : Top-ind(A, B) — Filt(A, B)
and () : Filt(A, B) — Top-ind(A,B). It is clear that ( )! o (A) is the identity. Let
F : A — B be a Top-indexed functor, we will show that for every ultrafilter (/,G)
and every (A;)1,Yrg((Ai)1) is

F'(im [1A4;) = im FN(I] A;) — lim [1F'A;.

hALEA .
JeEG € JEG J€EJ JEG e J
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Thus, using lemma 6.8 we conclude that ' = F.
Let (I,G) be an ultrafilter, and Jo € G. Then S(Jo) denotes the principal filter on
I generated by Jo. For every j € Jo we have the continuous function hjy, 1 S = Is,)

defined after definition 6.3, that induces the following commutative square

*

3Jo

Als) AS
F1s(5) l t FS
Blstso) X B,
3Jo

iy [1 A;;) € Alsto), then we have that F(m;) =

If we start with ((A:), Aag,,,
. 5 i’ €Jo
(FI5((A), Ang ) =B TT Aj));. Therefore
i)' € Jo
Is(g9) _ {m;) ! (Fm;) :
I % (<A¢>’Aasuo) yEIe I’_Ie JAJ’) = ((FAi>’FA05(Jo) = /EJFAjI)'
J s} J o

Now, the continuous function hgs(p) @ Ig — Is(s,) induces another commutative

square

*

J
_AIS(-’O) — Ale
Flsto) t lplg
Blstwo) T Ble

Jo

from which we conclude that

Y ) - Fm 1 .
FIo(Angy, P31 A; 22 lim T14) = Fhagssy —3 1 FA; = lim TIFA;.
1€ Jo JEGIE) )€ Jo Jeg€y

In particular, taking A.g,, =1 A; and m; ==, consider the morphism
1€ Jo

1 Aj " lim IIA

———

JEJ[ Jegjey

13 1

in Ale, apply FI¢ to obtain that
Flo(lim 1A; — lim T14;) =

Jegr€y Jegjre,
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F(lim T1A4;) = lim F(IT A;) = Lkm T1FA;.

JEG) €, Jeg 1€ J JEG )€,

This last arrow is then yr¢. Since we already know that F' is determined by these

arrows we see that we have an equivalence as stated. O

6.11 Subcategories Closed Under Ultraproducts

Suppose now that we have a full subcategory Ao of A such that Ao has filtered
colimits and they are preserved by the inclusion Ag — A. Then we can define a
sub Top-indexed category A of A as follows. Af is the full subcategory of AX

whose objects are the coalgebras (A, — lim []A,) such that for every z € X
UszyeU

we have that A, is an object of Ag. It is clear that for every continuous function
f:Z — X, the functor f*: AX — AZ restricts to AJ, that is, f*: AY — AZ. It
also is clear that for every directed poset D, the functor ¥p : AXD — AP restricts
to Up : Aé(’g — AP,

We will be able to apply the results of this section to Top-indexed categories of
models due to the fact that models over a sheaf category are the same thing as sheaves

of models as the next proposition shows

Proposition 6.10. The category of models MOD(P)X is equivalent to the full sub-
category of (SETF)X whose objects are coalgebras (M, —= lim [ M,) such that for
every z € X, M, € Mod(P). g

Proof. First notice that this is clearly true for the topological space 1. Given a
topological space X, a model M € MOD(P)X corresponds to the coalgebra (z*M —
Lim [ly*M) in (SETF)X. Clearly 2*M € Mod(P). On the other hand, if we start

UszyeU

with a coalgebra (M, — lim [[M,) in (SETF)X such that for every z € X we

UszyeU
have that M, € Mod(P), this determines a functor M : P — Sh(X) such that
MP = (M.P =5 lim TIM,P) . 0

UszyeU

Definition 6.5. We say that the subcategory Ay is closed under A-ultraproducts if
for every ultrafilter (/,G) we have that the functor lim T[] (-) : A’ — A restricts to

. JeEGr e J
a functor lim [1(.): Al — A,.

—_—

Jeg eJ
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Fix full subcategories Ay of A, and By of B, with filtered colimits preserved by
both inclusions and such that Ay is closed under A-ultraproducts and By is closed
under B-ultraproducts. Define Ay and By as above. We assume as well that in A

and in B filtered colimits commute with pointwise absolute equalizers.

Lemma 6.11. If FF : Ay — By is a Top-indexed functor, then F' : Ay — By

preserves filtered colimits.

Proof. We can repeat the same reasoning that leads to the proof of proposition
6.6. O

We have then a functor ( )! : Top-ind(Ag, Bo) — Filt(A,, By). Notice that we
can not define a functor in the other direction as before because we do not have, in
general, products in Ay or By.

Given F' : Ay — By, we can define the natural transformations yrg for every
ultrafilter (/,G) as before, that is, ypg(A:); is

Flo(lim TTA; — lim [1A:): F'(im [1A:) — lim []F'A.

—— —_—
JEGjEJ JeEGjeJ JeEC €T JeceJ
or put in a diagram lim T1 ()
€

I JEC,€J

(FY)! YFG F!
B{)_——BO.
Lm 1 (1)
JeECyeJ

With essentially the same proof we also have

Lemma 6.12. If in B reduced products are determined by ultraproducts and F :
Ao — By is a Top-indezed functor, then F is determined by the natural transforma-
tions yrg for all ultrafilters (1,G).

d

Lemma 6.13. The functor ( )' : Top-ind( Ao, Bo) — Filt(Ao, By) is faithful.
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Proof. If ¢ : FF — G : Ay — By is a T-indexed natural transformation, X is a

topological space and z € X, consider the following diagram

Since ¢ is a T-indexed natural transformation, we have that for any coalgebra (A, Sy
Lm ] A,) in Aé(, (¢X<Tr>); =¢'A,: FA, — GA.. Itisclear then that ¢* is totally

UszyeU

determined by ¢! a
It is easy to see that for every small pretopos P the category Mod(P) satisfies
all the necesary conditions as a full subcategory of Set® and therefore as a corollary

of lemma 6.11 we have

Proposition 6.14. For any Top-indezed functor F : MOD(P) — MOD(Q) the
functor F': Mod(P) — Mod(Q) preserves filtered colimits. O
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