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Abstract

Let P be a small pretopos. Makkai showed that the pretopos (i.e. the language) can

be recovered from the category of models of the pretopos (i.e. Set-valued functors

preserving the pretopos structure). The realization that ultraproduct functors can be

expressed as composition of functors on categories of sheaves over topological spaces

opens the door for using continuous families of models, that is, categories indexed

over topological spaces.

We introduce a special kind of category indexed over topological spaces in which it

is possible to define ultraproduct functors. This involves continuous functions f : Y —

X for which the functors f. : Sh(Y) + Sh(X) preserve the pretopos structure. We

give a characterization of such functions. Each of these indexed categories produces

a pre-ultracategory in the sense of Makkai.

Set‘)

We also consider the 2-adjunction PRETOP” ea CAT and the 2-monad

it generates. We show that each algebra for this 2-monad carries a pre-ultracategory

structure as well. We induce another 2-monad over the category of algebras and show

that these new algebras carry the structure of ultracategories.

We combine both approaches by defining a 2-adjunction over the 2-category of

special indexed categories mentioned above and show that the corresponding algebras

also carry ultracategory structures.

Finally, aiming at giving filtered colimits a bigger role in the picture we generalize

a theorem of Lever, namely, that indexed functors from the indexed category that has

the category of sheaves Sh(X) over the topological space X, to itself is equivalent to

the category of filtered colimit preserving functors from Set to itself.

vii
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Introduction

The concept of pretopos was introduced by Grothendieck in [1] in relation with co-

herent toposes. A pretopos is a category with finite limits, strict initial object, stable

disjoint finite coproducts and stable quotients of equivalence relations. Functors be-

tween pretoposes that preserve the pretopos structure are called elementary. Small-

ness is also required in [1] but we allow our pretopos to be “big”, so for example

the category Set of sets is a pretopos. Makkai and Reyes in [18] study the rela-

tion between coherent theories and pretoposes. They show there how to construct

a small pretopos for any coherent theory that essentially codifies the information of

the theory in the sense that the category of models for the coherent theory and the

category of elementary functors from the pretopos are equivalent. That is we can

replace the theory by the pretopos. The construction of the pretopos involves as a

first step the construction of a logical category. A category is logical if it has finite

limits, stable finite sups of subobjects and stable images. This logical category can

also replace the theory, however there are two good reasons to use pretoposes instead

of logical categories. The first one is that there is a criteria to determine whether an

elementary functor between pretoposes is an equivalence (see 7.1.8 in [18] or Lemma

1.15 below). The second reason is the so called conceptual completeness: If an el-

ementary Ff : P — Q between pretoposes induces by composition an equivalence

Mod(Q) — Mod(P) then F is an equivalence (see 7.1.8 in [18] or Theorem 1.16

below). Here Mod(P) denotes the category of elementary functors from P to Set.

There are some questions to be asked in this context. One is whether it is possible

to recover the language from the category of models. Another one is under what

conditions a category is a category of models. On the one hand we want to recover



the pretopos P from the category Mod(P) and on the other we want to find con-

ditions on a category A for it to be of the form Mod(P) for some small pretopos

P. This resembles for example the well known Gabriel-Ulmer duality (see [17]) in

which we have equivalences C + LFC(LEX(C, Set), Set) for any small left exact

category C and. A + LEX(LFC(A, Set), Set) for any locally finitely presentable

category A where LEX denote the category of left exact categories in the second

universe and LFC is the category of categories with small limits and small filtered

colimits in the second universe. Makkai in [15] proves one half of the above duality

for pretoposes. Notice first that in the equivalence C — LFC(LEX(C, Set), Set)

what is done is to consider functors LEX(C,Set) — Set and add conditions on

them (the LFC part) to cut down to the ones that are of the form evc for some C

in C. For pretoposes we have to replace LEX(C, Set) by Mod(P). Mod(P) has

filtered colimits and they are calculated as in Set’. However we can not in general

guarantee the existence of any other kind of limits or colimits. What can be used

is another construction that is also pointwise, namely the ultraproduct construction.

Ultraproducts are mixed limits (filtered colimits of products) and therefore have very

few canonical arrows, as opposed to honest limits or colimits. In [15] the part corre-

sponding to LFC is taken by ultracategories. An ultracategory is obtained in two

steps. First a pre-ultracategory is a category A together with a functor [U4]: A’ + A

for every ultrafilter (/,2/). Functors between them have transition isomorphism re-

lating the corresponding functors of the form (]. The concept of ultramorphism is

introduced to supply enough arrows to and from ultraproducts. An ultracategory is

a pre-ultracategory together with ultramorphisms. This suffices to prove an equiv-

alence of the form P — UC(Mod(P),Set) where UC denotes the category of

ultracategories in [15]. The other side of the question is still open.

The idea that started this paper is that we can recover the ultraproduct functor

[U1] : Set! — Set for every ultrafilter (/,U/) using categories of sheaves. Specifically

the functor [2] is naturally equivalent to the composition Set! —- SAL) meee SA(BI)

eee where §/ is the Stone-Cech compactification of J, uw: J — (J is the usual

embedding and U/* is the functor associated to the continuous function U:1-— 61



that picks the ultrafilter ¢ € BJ. So we consider categories indexed over the cat-

egory Top of topological spaces and continuous functions. We follow Paré and

Schumacher [19], the approach in Benabou [3] is via fibrations. A Top-indexed

category A consists of a category A* for every topological space X and a functor

ft : A® — AY”. for every continuous function f : Y — X subject to some coher-

ence conditions. In particular if we take the category Sh(X) for every topological

space X and the usual f* : Sh(X) — Sh(Y) we obtain a Top-indexed category

that we denote by SET. This category plays the réle of sets in Top-indexed cat-

egories. f* : Sh(X) — Sh(Y) is left exact and has a right adjoint. Thus f* is

elementary. We can define then, for every pretopos P the Top-indexed category

of models of P. We take the category Mods;:x)(P) for every space X and define

f* : Modsyx)(P) > Modsny)(P) by composition with f* : Sh(X) > Sh(Y) for

every continuous f : Y + X, where Mods,,x)(P) denotes the category of elemen-

tary functors from P to Sh(X). We denote this Top-indexed category by MOD(P).

To be able to recover the ultraproduct functors we have to take into account the

functors of the form p, as above. For this purpose we introduce the concept of

ultrafinite function: A continuous function f : Y — X is called ultrafinite if the

functor f, : Sh(Y) — Sh(X) is elementary. Notice that for an ultrafinite f the

functor f* : Modsyx)(P) —~ Modsny)(P) has a right adjoint. Furthermore we

recover the ultraproduct functors [/] : Mod(P)' — Mod(P) as the composition

Mod(P)! —+ Modsy)(P) + Modsngn(P) Vina P.. Acconlingly wa hae:
acterize those continuous functions that are ultrafinite and restrict to Top-indexed

categories for which f* has a right adjoint f, for every ultrafinite f. Functors between

these are those that behave nicely with these adjoints. We denote this category by

Los. With the category fos we can recover the pre-ultracategory structure but

unfortunately it is not enough to recover the general ultramorphisms.

There is another way to recover the pre-ultracategory structure via algebras over

CAT, and with a monad over these algebras we can also recover the ultramorphisms.

Set”

Consider the 2-monad T generated by the 2-adjunction PRETOP” CAT.
Mod(_)

We can define a functor T-ALG — PUC where T-ALG denotes the 2-category of

T-algebras and PUC denotes the 2-category of pre-ultracategories. We obtain an-



other 2-adjunction PRETOP” GEG) T-ALG where ®p and W are
-), ®.)

T-algebra structures we define below. Let S denote the 2-monad generated by this

adjunction. We can define then a 2-functor S-ALG — UC where UC denotes the

2-category of ultracategories.

Our proofs about algebras are based on the following observation. Suppose we

have functors H: A— B, R: B > A and a natural transformation 6: RH — 1a.

If B has a functorial weak initial object then A has a functorial weak initial object

as well. A functorial weak initial object is a weak initial object with a functorial

choice of arrows from it to any other object. When the natural transformation @ is

an isomorphism, the existence of functorial weak colimits in B implies the existence

of functorial weak colimits in A. It is well known that colimits exist if the category

has functorial weak colimits and split idempotents. In this context it is easy to see

that A has split idempotents if B does.

The above setting is specially well suited for algebras over a 2-monad. If we have

a 2-monad T = (T,n, ) over CAT for example and a strict algebra (A, ®) then one

of the diagrams for ® is

a—4.TA
la \ Jo

A

If TA is a ‘good’ category then A will necessarily inherit some of the good properties

of TA. In particular the existence of certain kinds of limits or colimits. Furthermore,

the other commutative diagram for algebras will tell us how to calculate these limits

and colimits on A: Simply take the diagram over A, compose with 7A, calculate

the limit or colimit in JA and apply ®. For example consider the 2-monad given by

the 2-adjunction Set”) 4 Set”) : CAT”? — CAT. In this case having an algebra

structure on a category A implies that A is complete and cocomplete. We note here

that there are some size problems to be resolved.

One way of trying to settle these size problems and at the same time give a good

framework in which to attempt a solution to the second problem (namely charac-

terizing those categories that are of the form Mod(P)) is to combine the last two

Los_, SET)

MOD(.)
approaches. That is, we define a 2-adjunction PRETOP” Los, gen-



erate the corresponding 2-monad T and define a functor T-ALG — UC.

Finally, in a closely related development we generalize a theorem of Lever [11].

Lever showed that there was an equivalence between the categories Filt(Set, Set)

of filtered colimit preserving functors from Set to Set and Top-ind(SET,SET) of

Top-indexed functors from SET to SET. We define a Top-indexed category A

for every category A with filtered colimits and products by taking coalgebras over

AX! for every topological space X and show that we get an equivalence between

Filt(A, Set) and Top-ind(A,SET). The definition of the cotriple is very similar to

the one induced by the adjunction Sh(X)2—> Set'*!, This will allow us to prove that

whenever we have a Top-indexed functor F : MOD(P) — SET we have that the

functor F! : Mod(P) — Set preserves filtered colimits.

The account chapter by chapter is as follows.

In chapter 1 we review the definition of pretopos and its relation to coherent

toposes; we consider some properties of pretoposes we will need later, especially the

ones concerning equivalence relations. We show that for any pretopos P and any

object P in P the category P/P is a pretopos and that for any other pretopos

Q, the category Modg(P/P) is equivalent to the category whose objects are pairs

(M,a) with M in Mod(P) and a a global element of MP. We use this description

to give a categorical proof of the existence of an arrow into an ultrapower of another

model under certain conditions. Finally we give a combinatorial description of the

left adjoint to the forgetful functor Pretop — Lez.

Chapter 2 is devoted to the concepts of ultracategory and ultramorphism. There

we give a proof of Makkai’s theorem (the equivalence of a small pretopos P and the

category UC(Mod(P), Set). We follow Makkai’s [15] in this chapter fairly closely.

In chapter 3 we consider categories indexed by topological spaces. We first review

the concepts of indexed category theory drawing mainly from Paré and Schumacher

[19] and also from Lever [11]. We then introduce the concepts of ultrafinite continuous

function. The Top-indexed categories that have right adjoints for the functors induced

by ultrafinite functions are introduced next and are called Los categories. We close

the chapter with a characterization of ultrafinite continuous functions.

In chapter 4 we start with a brief review of the folklore of functorial weak (co)limits.

We then explore the relation between functorial weak (co)limits and retractions of



categories. We apply these results to show that if a left exact category C has an alge-

bra structure for the 2-monad generated by the adjunction Pretop=—, Lez, then C

is a pretopos. This points the way to show that the forgetful functor Pretop — Lex

is monadic. Further analysis of this will have to await another paper. We again ap-

ply these results.to show that algebras for different 2-monads over CAT have certain

limits and colimits. We consider then in detail the two successive monads of preto-

poses over CAT we are interested in and their relation with pre-ultracategories and

ultracategories.

In chapter 5 we combine the approaches from chapters 3 and 4 by defining a monad

over the category Los. We again relate this category of algebras with ultracategories.

In chapter 6 we define Top-indexed categories of coalgebras over categories with

filtered colimits and products. We generalize the result in Lever {11] and use this

result to show that any Top-indexed functor F : MOD(P) — SET satisfies that

F! ; Mod(P) — Set preserves filtered colimits.



A Word About Size

We work in the setting of Grothendieck universes. That is we fix Grothendieck

universes U; € Uy € U3. Sets, pretoposes, categories in Uy, are called small.

The categories of small sets, small pretoposes, small categories are denoted by Set,

Pretop, Cat respectively. We denote the category of sets in U2 by SET, similarly

PRETOP and CAT denote the categories (2-categories rather) of pretoposes and

categories in the second universe U, respectively. Then Set is an object in SET.

SET is not a category in U2 but it is a category in U3.

In this paper it is always assumed that limits and colimits are taken over diagrams

with small domain.



Chapter 1

Pretoposes

1.1 Definition and Background

As we pointed out in the introduction the concept of pretopos comes from [1]. In this .

paper however we adopt the definition given in [15] that is equivalent except that the

former definition asks for smallness.

Definition 1.1. The category P is a pretopos if and only if

1. P has finite limits.

2. P has a strict initial object.

3. P has stable disjoint finite coproducts.

4. P has stable quotients of equivalence relations.

A functor F : P — Q between pretoposes is called elementary if and only if it

preserves finite limits, initial object, finite coproducts and quotients of equivalence

relations.

If we denote the initial object by 0, it being strict means that for every P in P,

an arrow P — 0 is necessarily an isomorphism.

Given objects Q1,..,Qn in P, the coproduct is disjoint if for every j,k € {1, jn}

j #k implies that the square

0 Q;

|



2. “i FR

ml |

for every k. We say the coproduct is stable if the induced map
7m TT ,

k=)

is an isomorphism. It is not hard to see that, if the coproducts are dis
joint and stable,

then the injections into the coproduct are monomorphism
s.

Given an equivalence relation P= Q in P, a quotient for the equivalence relation
: g

is a coequalizer oo R of f and g such that the square

Po=4#—= 0

flo
ew

is a pullback. It is stable if the pullback of r along any arrow A — Ris the quotient

of some equivalence relation.

Given pretoposes P and Q we denote by Modg(P) the category whose objects

are elementary functors from P to Q and whose arrows are natural transformations

between these. We call Modg(P) the category of models of P in Q
. Clearly, the

category Set is a pretopos and for any pretopos P we denote Modse1(P) simply by

Mod(P)).

Following the notation from [8] (that refers in its turn to [1]), a topos
 E is called

coherent if it is equivalent to a category of the form SA(C, J) for some site (C, J) with

C asmall left exact category and J generated by a pretopology in which every covering

family is finite. An object X in a topos E is called compact if every epimorphic

family {¥; > X}, with codomain X contains a finite epimorphic subf
amily, X is

called stable if, for any pair of arrows gS + X —T with S and T compact we have

that the pullback S$ xx T is compact, X is called coherent if it is both, compact and

stable. We have (see 7.37 in [8])



10

Theorem 1.1. /f E is a coherent topos and Eon is the full subcategory of E of

coherent objects, then Eon is an essentially small pretopos and the inclusion E’eo,

E is elementary. O

Given a small pretopos P we can consider the precanonical topology J (J is gen-

erated by the pretopology whose covering families are all finite epimorphic families).

We have (see 7.40 in [8])

Theorem 1.2. A topos E is coherent if and only if there exists a small pretopos

P such that E is equivalent to the category Sh(P,J) where J is the precanonical

topology on P. Furthermore, the pretopos P is determined up to equivalence by E.

O

The pretopos P determined by a coherent topos E is of course E.,. From 7.45

and 7.47 in [8] we have

Theorem 1.3. /f P is a small pretopos, J the precanonical topology on P and Mo

the elementary functor My = (P — (Sh(P,J))con + Sh(P,J)), then for every

Set-topos E the functor Topos/Set(E,Sh(P,J)) — Modg(P) that assigns to
*

every f : E — Sh(P, J) the composition po sap, J) i
O

E is an equivalence.

From [18] we know that finitary coherent theories correspond to small pretoposes,

so what the theorem above says is that SA(P,J) is the classifying topos for the

coherent theory P over Set, that is Sh(P, J) = Set[P}.

We will have the opportunity to use Deligne’s theorem (see 7.44 in [8])

Theorem 1.4. A coherent topos has enough points. oO

As it is pointed out in [8] the proof of Deligne’s theorem resembles that of Gédel-

Henkin completeness theorem for finitary first-order theories. This is done in [18].

We will use the following result as well (see 7.17 in [8]). Recall that (in [8]}’s
of

notation) a surjection F — E is a geometric morphism F *_ E such that {* reflects

isomorphisms (equivalently f* is faithful, equivalently thé unit for the adjunction

f* 4 f. is mono (see 4.11 in [8])).
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Lemma 1.5. /f a Grothendieck topos E has enough points then there exists a sur-

jection Set/I — E for some I in Set. oO

1.2 Some properties of pretoposes

In this section we include some properties of pretoposes we will use later on. Many

more properties can be found in [18]. Following the notation in [18] we call a morphism

f:A— Bina category C surjective if for every commutative diagram

iN /m
Bo

with m a monomorphism, m is necessarily an isomorphism. Then an image of an

arrow f : A — B, if it exists, is a subobject m : Bo>>B such that there exists a

surjective g: A — Bo with

f

\ A

commutative. In a category with pullbacks images are unique up to isomorphism.

A B

v

Images are called stable if the pullback of a surjective is a surjective.

Lemma 1.6. Let Cj,..,Cy be objects in a category C with finite limits and finite

coproducts. The following condition is equivalent to []{_, Cy being stable.

For every diagram [[p_, Ct Afi), D+LA the square

Weer Pe 2 — I, Cy
(ru) (Fe)

q D
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is a pullback, if for every k the square

Pp, —#+ 6,

Tk | fr
A 7 D

is a pullback. O

Now, fix a pretopos P for the rest of this section. We have (see 3.3.9 in [18])

Lemma 1.7. P has stable images. oO

(see 3.3.10 in [18])

Lemma 1.8. P has stable finite sups. O

(see 3.3.5 in [18])

Lemma 1.9. Given objects P,,.., P, in P we have that for every k the k-th injection

i, : P; > LL, P; is a monomorphism. O

As a matter of fact it can be shown that a category with finite limits, stable finite

sups, stable images, stable quotients of equivalence relations and stable finite disjoint

sums is a pretopos. This is the definition of pretopos given in [18]. From there it

follows that the definition adopted here and the one given in [1] are equivalent except

for the smallness condition (see the discusion after definition 3.4.3 in [18]).

Suppose now we have a finite family na cle R};_, in P. Consider the pullback
diagrams om

Pi, —H*~ Qi
Pik |

Q; R
fj

Lemma 1.10. With the above notations the square

bere

(teDik) | (9;)
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is a pullback.

Proof. We do it for n=2. Since finite coproducts are stable, it follows from Lemma

1.6 that for any a: A — P the following square is a pullback

(2172, 1272)
(A xp Q1) L(A xp Q2) Qi Q2

(TM, 71) (915 92)

A a P

where A Xp Q, is the pullback of g; along a and A xp Q» is the pullback of gz along

a. For a = (fi, fo) : Qi 11 Q2 — P we can substitute A xp Qi with Pr [] Po and

A Xp Q2 with Py2 [J P22. Oo

Suppose now that for every k = 1,..,n we have a pullback diagram

Tk
P, Ri,

Qk —=
fe

Lemma 1.11. With the above notation the square

Ll. rr
Uk Pi, Uk Ry

Lk % Uk 9

LU. Qs LU Sk
Uk fi

is a pullback (i.e. [], preserves pullback).

Proof. In view of Lemma 1.10 it is enough to show that for all k we have P, ~

Qk XII, Se R, and that for j # k we have Q; XT, Se R, ~ 0. For the second one notice

first that S; XT, S S, ~ 0 since finite coproducts are disjoint, second that we can

induce a map from Q; XI, Se R, to S; XT, Se S, and finally that the initial object is
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strict. For the first consider the diagram

Pp, —2—« R, Ph. Wp

a | Gk | 2

Qe i kT. hk

lg, ls, bk

Qe Se Le Se
fr by

Since by Lemma 1.9 the injections are mono we have that the bottom right square

above is a pullback, the other three squares are also pullbacks so the exterior one is

a pullback. Oo

Suppose we have a pair of arrows Q ——> P in P. Consider the image of (f,g)
— g

_Af9) py p

KA fen

We say that (r1,r2) is the relation generated by (f,9).

f
Lemma 1.12. Given Q==P in P, if there exists an arrow p: P — Q such that

g

fp = 1p and gp = |p then the relation R—=P generated by (f,g) is reflexive.
"2

Proof. Consider the commutative diagram

Ty -
ut [1p

R <Q Lp
1

O

f
Lemma 1.13. Given Q=— P in P, if there exists an arrowa : Q — Q such that

g



the diagram

TY 
f

then the relation R—: P generated by (f,g) ts symmetric.
commutes,

T2

Proof. By hypotheses the diagram

Q (f19) p yep

o (72, 7)

Q PxP
(f.9)

commutes. Taking the image of (f,g) twice w
e get

R

o a | (2,771)

ae ee
(f.9)

So there exists a unique & as shown above such that the resulting 
diagram commutes.

f

Now we have a condition that 1s enough for transitivity. Given Q — P as before,
ry

and the generated relation R — P consider the following diagram
LQ

i . Q

P2 9 ; R

$2 T2

Q eo Ra, P



16

where both squares are pullbacks. By the pullback property we can induce h above

such that the resulting diagram is also commutative. Since surjections are stable and

€ is a surjection it is easy to see that h is also a surjection.

rl

Lemma 1.14. With the above notation RI P is transitive if there exists an arrow

t:T —-Q such that the diagram "2

commutes.

(7151, 7281, 7282)
Proof. First we show that the arrow S Px Px P is a monomor-

a

phism. Suppose es ae S are such that

a (7181, 7281, 7282)
AS Ps PSP

commutes. Then clearly (r1,r2)s1;@ = (r1,72)$1b and (r1,172)s2@ = (71, 72)526. Since

(r1,72) is mono we have s}a = s,b and s2a = sb. Since S is the pullback of r; and

ry we have a = 6. Since h is surjective we have a surjection-mono factorization

(fP1, 9P1; 9P2) PxPxP
a ae riya, agp)

and using the properties we are assuming for ¢ the diagram

7 (fP1,9P1, 9P2) Px Px P

| (11, 73)
PxP

(1.1) : (f,9) ‘

clearly commutes. Consider the following surjective-mono factorizations

s (7181, 7281, 1282) PxPxP (71, 73) PxP

3

}
J
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and

| _ 
: aU

| t
e ;

V v! R (rina x P

also commutes. Notice that both compositions are surjective-mono, so we can induce

é as shown such that both resulting traingles commute. Define t: S — R as the
4 /

composition S—+ U —+ V — R. Now it is easy to see that

(T1151, r'282)Se)

R PxP
(ry, 12)

r

commutes. This is enough for RI P to be transitive (see exercise (TRAN) in [2]).

Oo oa

1.3. Conceptual completeness

In [18] from any given finitary coherent theory they construct a pretopos that has

the “same” category of models. This is done in two steps, first a logical category is

constructed, a very detailed construction of it is given in [6]. The construction of a

pretopos from a logical category is the second step.

The advantage of using pretoposes instead of logical categories is the following

two theorems from [18], but first we need a definition (also from [18])

Definition 1.2. Given an elementary functor F : P — Q between pretoposes we

say that
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1. The functor F is subobject full iff for every P in P, F induces an epimorphism

Sub(P) — Sub( FP)

2. The functor F is conservative iff for P in P, F induces a monomorphism

Sub(P) + Sub( FP)

3. An object Q in Q has a finite cover via F if there exists a finite family

(QL Q,4FP}y

such that the family (9: @}t, is epimorphic.

Observe that F being conservative is equivalent in this context to F’ reflecting

isomorphisms.

We have (see 7.1.7 in [18])

Lemma 1.15. /f P is a pretopos then an elementary functor F : P + Q between

pretoposes is an equivalence if and only if it satisfies the following three conditions

1. F is subobject full.

2. F is conservative.

3. Every object of Q has a finite cover via F. Oo

And (see 7.1.8 in [18})

Theorem 1.16. [f F : P > Q is an elementary functor between small pretoposes

such that _o F : Mod(Q) — Mod(P) is an equivalence then F is an equivalence.

O

Theorem 1.16 is called conceptual completeness. The proof in [18], besides in-

volving lemma 1.15, involves soundness and completeness theorems and Los-Tarski’s

theorem on sentences preserved by structures.

1.4 Los’ Theorem

A very important example for us of an elementary functor is given by Los’ theorem.

Let (J,G) be an ultrafilter, then we have the ultraproduct functor lim [] (-) : Set’ =
JEG JET

Set. We also denote this functor by [];(-)/G or simply by []g. This version of Los’

Theorem comes from [15]
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Theorem 1.17. (Los’ Theorem) The functor lira. - T1(.) Set! — Set is elemen-
Jeg EJ

tary.

Proof. (sketch) The proof is not hard but deserves some lines. []g preserves finite

limits since for every J C I the functor []jey : Set’ —- Set preserves limits and

the colimit over elements of G is filtered. Since epimorphisms in Set! are split,

we have that []g preserves epimorphisms. Clearly []g preserves 0. Finally, given

(A;) , (Bi) in Set’, we use the fact that G is an ultrafilter to show that the induced

map []; A:i/G + I], Bi/G — T(Ai + B;)/G is onto. Oo

1.5 Slice pretoposes

Let P be a pretopos and P an object of P. We have

Lemma 1.18. The slice category P/P is a pretopos

Proof. Since P is left exact then P/P is left exact. If 0 is the initial object in

P then 0 > P is a strict initial object in P/P. The coproduct of g—-L p and

R—— P is QU pier P and is easily shown to be disjoint and stable. If a pair of

arrows ae al in P/P with gs P and R—~ P is an equivalence relation then the

corresponding Q=> Ris an equivalence relation in P. Consider its quotient RS

in P. Using the universal property of the quotient we induce a map S + P such

that tile is a morphism in P/P. This last arrow is the quotient in P/P. Oo

Then we have the forgetful functor U : P/P — P that has a right adjoint

Ap: P — P/P. Given f : Q — Rin P we have that Ap(Q) =7p:QxP—P

and Ap(f) = f x P. We are ready for

Proposition 1.19. The functor Ap : P — P/P is elementary.

Proof. Ap clearly preserves finite limits since it has a left adjoint. Ap(0) = mp:

0x P => P but 0x P ~ 0 due to the fact that 0 is strict in P. Since binary coproducts
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are stable and for every Q, R in P we have that both squares in the diagram

; Pp ,

Qx p24 (QR) x Pee Rx P

TQ 7 TR

Q———- QU Rk-——
Q R

are pullbacks, we have that (Q[] R) x P ~ (Q x P)I|(R x P). Then Ap preserves

binary coproducts. The proof for preserving quotients of equivalence relations is left

to the reader. Oo

For any pretopos A we can induce the functor

—oAp: Moda(P/P) — Moda(P).

What we want to do now is to give an equivalent description of the category

Mod4(P/P) in terms of the category Moda(P).

Define the category Ela(evp) as follows. The objects of El4(evup) are pairs (M,a),

where M € Moda(P) and ais a global element of MP, that is,a:1— MP in A.

An arrow h: (M,a) > (N,6) in El(evp) is an arrow h: M — N in Moda(P) such

that the diagram
a

1 M P

P

N i
commutes. As usual, when A = Set we drop the subscript.

Theorem 1.20. /f A is a pretopos then the categories Ela(evp) and Mod,(P/P)

are equivalent.

Proof.- We define a functor 0 : Ela(evp) + Mod,a(P/P) as follows. Given

(M,a) in Ela(evp) define @(M,a): P/P > A such that 0(M,a)(Q —>+ P) is the

pullback

O(M,a)(Q +> P) MQ

Mq

1 “ MP,
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and if

f R

os

is a morphism in P/P, we define O(M,a)(f) : O(M,a)(Q —, P) = 0(M,a)(Q —

P) as the unique morphism that makes the diagram

Q

0(M,a)(q) ' Wim

@(M,a)(f)

Mq

Mr

a MP

commute. ©(M,a) turns out to be an elementary functor from P/P to A. Now, if

h:(M,a) > (M’,b) isin Ela(evp), then define O(h) : O(M,a) > O(M"',b) such that

for every Q —4 P in P/P, O(h)(q) is the unique morphism that makes the diagram

O(M',b)(q) M'Q

\owe Ma /

| | Ma M'q

l a MP

/ oN
1 A M'P

commute. We define now a functor in the other direction. Define =: Mod,4(P/P) —

Ela(evp) as follows. Given a model N in Mod,(P/P), when we apply N to

p—4§ Pp xP
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where 6 is the diagonal map, we obtain a morphism N6:1— N(Ap(P)). We define

=(N) =(NoAp,N6). If k: N > N’ is a morphism in Mod,(P/P) then it is clear

that the diagram

18. N(Ap(P))
NEN /kAP(P)

P))N’(Ap(

commutes. Define =(k) = kAp : (No Ap, N6) > (N'0 Ap, N'6). It is not hard to

prove that = is a quasi-inverse for O. Oo

It is easy to see that the forgetful functor El4(evp) > Moda(P), (M,a)'> M

is isomorphic to the composition El,(evp) 9, Mod,(P/P) = Mod a(P).

We use this description to give a categorical proof, instead of the usual model

theoretic argument, of the following theorem from [15] we will need later. First a

little notation. Given an ultrafilter (J,G), we have the ultraproduct functor

Tg =lim [](-): Mod(P)' + Mod(P).
Jeg ied

If we have a family of models (M;); we denote lim []((Mi)r) by TI; Mi/G. When
oS

JEGIES

we apply this functor to the constant /-family (M); we denote the result by MY. We

denote by 6: M — M9 the usual diagonal morphism. If we have a monomorphism

Q>>P in P and a model M in Mod(P), we have that MQ>>MP. We may assume

that this mono is actual containment of sets. If we have a homomorphism h : N — M9

and elements a € MP,b € NP for some P in P such that hP(b) = 6P(a), then it is

not hard to see that for every Q@->P in P, b € NQ implies a € MQ. The converse

also holds.

Theorem 1.21. Assume P is small. Let (M,a),(N,6) € El(evp), suppose that for

every monomorphism Q>=+P we have that b € NQ implies a € MQ, then there exist

an ultrafilter (1,G) and a homomorphism h: N —>+ M®% such that hP(b) = 6P(a).

We will prove the case P = 1 first

Lemma 1.22. Let M,N in Mod(P), suppose that for every monomorphism Q>—1,

NQ =1 implies MQ =1, then there exist an ultrafilter (S,G) and a homomorphism

N— M9.



exists a diagram ['y : I —>+ El(M) such that the diagram

1 + El(N)

try |
El(M) — P

commutes, where the functors to P are forgetful functors. To show this, consider

the diagram I —, El(N) — P. Since P has finite limits and J is finitely gen-

erated we have that the limit 1 2 m P of the diagram exists in P. It is clear
(bE NP)E!I

that N(Li_m P) = lim NP. We have (b)yeypyer € 1 tm NP. Then
(6ENP)EI (®6ENP)EI (6ENP)ET

lim NP¥6O. It follows that] im MP #9. But anelementin! 1 m MP de-
(SE NP)ETI (SENP)EI (OE NP)ETr

termines a 'y : J —> El(M) such that the square above commutes. For every I € S$

choose aI'y. Given I € S, let T(J) = {K € S|I C K}. It is clear that T(I) 4 0.

Given I and I’ in S, Let J be the subcategory of El(N) generated by UI’. Clearly

J € S,and f(I)Nt(I') = T(J). Let G be an ultrafilter on S such that for every I € $

we have that {(I) € G. Consider the ultrapower M9, and define h : N —> M® as

follows. Given b € NP consider the subcategory of E/(N) that consists of one object,

(b€ NP), and its identity arrow. Let hP(b) = (P3(b € NP))ret(senp)- So, we have

a function hP : NP —+ MP. We have to show that h is natural. Let f : P —> P’

in P, consider the diagram

np. usp

/——-+» NfGNP AP’ M

Let b € NP, and let I be the subcategory of El(N) generated by (b € NP) ay
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(N f(b) € NP’). For every J € Sy we have that Mf(I'7(b € NP)) = Tr(Nf(b) €

NP’). Therefore the previous square commutes. O

The proof of the next lemma is easy

Lemma 1.23. Let (M,a),(N,b) € El(evp), the following two statements are equiv-

alent;

For every monomorphism QP, b€ NQ implies a € MQ

For every monomorphism r>>1 in P/P, O(N, 6)(r) = 1 implies O(M,b)(r) = 1

O

Proof of theorem 1.21.- Suppose that for every monomorphism Q@-—>P we have

that b € NQ implies a € MP, then, by lemma 1.22 there exist a filter (5,G) and

a homomorphism k : @(N,b) —+ O(M,a)%. This corresponds to a homomorphism

h: N —+ M§ such that hP(b) =6P(a). O

1.6 Left exact categories and pretoposes

It is shown in [18] that given a small site (C, J) with C a left exact category and J

generated by a pretopology (in the sense of [8]) all of whose covering families are finite,

a small pretopos F(C,J) can be constructed such that the category Mod(F(C, J))

is equivalent to Sh(C,J). This is done by producing first a theory T(¢,j) such that

for any logical category R, R-models of (C, J) are “the same thing” as R models

of Tc,y) (see 6.1.1 in [18]). From T(e,y) a logical category R(C, J) is constructed

together with a canonical model Mo : T(c,s) + R(C, J) with the universal property

that for every logical category R, R models of T(c,s) are “the same thing” as logical

functors from R(C,J) to R, the passage given by Mo. Finally R(C, J) is completed

to a pretopos F(C,J) and a logical functor No : R(C,J) — F(C,J) with the

universal property that for every pretopos P, logical functors from R(C, J) to P are

in correspondence with elementary functors from F(C,J) to P. In particular, when

J is generated by the pretopology whose covering families are singletons containing

isomorphisms a P model of (C,J) is simply a left exact functor from C to P.

Then the construction described above gives a left exact functor Fo : C — F(C,J)

with the universal property that composition with Fo induces an equivalence from

Mod p(F(C,J)) to Lex(C,P) for any pretopos P. We have a forgetful functor
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U : Pretop — Lez. The discussion above gives a small pretopos F(C) for every

left exact category C together with a universal functor fo: C > F(C). This clearly

produces a left adjoint for U. F(C) turns out to be the category (Seto) on (see

9.2.5 in (18]). What we do in this section is to give a combinatorial description of

F(C) using only C.

1.6.1 Coherent objects of Sete”

Start then with a small left exact category C.

Lemma 1.24. A functor F : C° — Set is a compact object in Set©” if and only if

it is finitely generated (that is, there exist objects Cy,..,Cy in C and an epimorphism

peat C(-,Ck) + F)

Proof. Suppose F is compact. For every x € FC consider T(zeFc) : C(.,C) -~ F

such that tirerc)C(1c) = 2. Then the family {C(.,C) —e8Fo_- F} sero is an

epimorphic family. Since F is compact there exist x) € FC1,..,%n € FC, such

that {C(_, Cy) eS. FY, is an epimorphic family. This clearly means that

(T(2,eFC,)) ? Ux C(- Ce) > F is an epimorphism.

Assume now that we have an epimorphism (Tx) : []~2; C(-,Cz)—* F and an

epimorphic family {GE Fa. Then for every k = 1,..,n there exists some

a, and 2, € Ga,C, such that feu.Ckr(tk) = TRCk(1o,). It follows that the family

{Ga, Ses, F\"_, is an epimorphic family. oO

Proposition 1.25. A functor F : C° — Set is a coherent object if and only if there

is a coequalizer of the form

[leu Dj) [ec F

g=1 k=1

in Set©” such that [[7_, C(-, D;) > Uke: C(-, Ce) generates an equivalence relation

Proof. Let F in (Set©””).o,. By Proposition 1.24 we can find an epimorphism
r

he C(-, Cx) AT). F. Consider its kernel pair R= Lf, C(-,Cx). Since R is
r2
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compact (it is coherent by Theorem 1.1) there exists an epimorphism

II C(., D;) il R.
j=l

This produces a coequalizer diagram

I] c(.2;))= Weck) F.

with (ry,r2) the equivalence relation generated by the pair of arrows on the left in

the diagram above.

__ nm

Conversely, assume |], C(-, Dj) = Uke C(_, Cy) >> F is a coequalizer such that
T1

the pair of arrows on the left generates an equivalence relation i Lia Cl. @e)-
2

Since []_, C(-, Dj) and Lj, C(_,C,) are coherent and images in (Set~”’)..4 are cal-

culated as in SetC” we conclude that R is coherent. Since (71,72) is an equivalence

relation with coequalizer F it follows that F’ is coherent. Oo

Remark 1.1. Without the equivalence relation condition in Proposition 1.25 we would

simply have that F is finitely presentable. So being coherent is a stronger condition

on a functor F that being finitely presentable.

1.6.2 Free Pretopos Generated By a Left Exact Category

Considering the previous section, the idea to construct the pretopos from C’ is to

characterize the pairs of arrows of the form

lle. p= Tee)
g=1 k=1

that generate equivalence relations (that is, that the image of

II €(., Ds) — (I €(-.Ce)) x (I CC. Ce)
j=l k=1k=1

is an equivalence relation).
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Notice that an arrow []7_, C(-, D;)—+ Lz, C(-, Cx) is a j-family of arrows

{C(., D;) % [J cc.)
k=1

and that this in turn corresponds to a family of arrows {D; Lig, }m,. That is y =
(C(_,f;));- Or put another way, there exists a function f : {1,2,..,m}— {1,..,n}

m

and a family of arrows {f; : Dj > Cy ;)}"L, such that for every 7 the diagramj=1

C(-.,D;) Aaelit C(-, C4(5))
2 2F(3)

commutes. Let’s start with two functions {1,..,m}=> {1,..,n} and two families of

arrows {fj : Dj > Cy }%, and {gj : Dj > Cy(j) }7L, in C, and assume that

m (24) 0C(-, fi)
CUD) —

u vac (24(3) 0 C(-, 95)
generates a reflexive relation. Consider then the epi-mono factorization

IT ecw)
k=1

Lm C(., Dj) AEE ECO te el c,) x I Cl. Ce)

We are supposing then that (11,72) is a reflexive relation. Then there exists an arrow

tT: [[C(_,C,) — R such that the diagram

R

n A nr nm
Uga1 C(-, Ce) koi C(-,Cx) x Ufa C(-, Ce)

R

commutes. Since is epi we can find a function r: {1,..,n} > {1,..,m} and a family

of arrows (i= D, (x) }Z=1 such that for every k, 8C;(r~) = TC;(1c,). This implies
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that for every k, frye = lo, = Gr(kyTk- It follows that fr = 1y1..m} = gr and that

the diagram

ny C(-, Cx) <b Wher C(-, Ce) + LE, CC. Di)j=1

(C(-, 9;))

pai C(-, Ce)

commutes. The existence of a commutative diagram as above implies that the gen-

erated relation is reflexive. We will have to take care of symmetry and transitivity in

the same way, and show that they work in any pretopos.

For the formal construction that follows we are going to use the concept of limit

sketch, for which we refer the reader to [16].

Let S be the limit sketch S = (G, D, L), where G is the graph

2) 1.9,

Poi g

D consists of the following diagrams

o—+1 o—1 1.9 1,0
o| 4 lo] AF s| 44 s| 4

0 0 1 1

9) _t. 1 9 P12 1

1 — 0 —_—
f si” ill

and L only has the cone _ py

as |

Poi |F

1 0
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We are going to consider models of the sketch S in Seto. Given a model ® :

S — Seto we are thinking of ®(0) as the set {1,..,n} and ®(1) as the set {1,..,m}

in the discussion above, and f,g and r as the functions with the same names as

above. The introduction of the pullback (2) is necessary for transitivity. The names

in the graph G are not accidental, r relates to reflexivity, s to symmetry and t to

transitivity. Notice that the diagrams in D that have r in them represent the condition

on the indexing sets that we found necessary on the discussion above for the generated

relation to be reflexive.

For every model @ : S — Seto we can construct a new limit sketch So =

(G», De, Ls) as follows. The graph Go has as set of nodes the set (0) [] ®(1) [] ®(2).

To make the notation easier we are going to denote the elements of ©(0) by the vari-

able xz, possibly with subindexes, the elements of ®(1) by the variable y again with

possible subindexes and the elements of ®(2) as pairs (y1,y2). We have the following

arrows in Go

ys Of y) for every y € (1).

y+ Og(y) for every y € ®(1).

¢—~ or (x) for every x € (0).

y—~> Os(y) for every y € (1).

(y1,y2) > &t(yr,¥2) for every (41, y2) € ®(2).

(yi,y2) + ®(y1,y2) = yn for every (yi, ya) € (2).

(yi, Y2) 2. pio(y1,y2) = y2 for every (y1,y2) € (2).
Notice that we have given the same name to many different arrows, if y: # y2

then ((y1 SL. ®f(y1)) 4 (y2 Sf. © f(y2)) so it will be necessary to specify domain and
codomain when confusion may arise.

De mirrors D in the following way. For every z € ®(0),y € ®(1) and (y,y2) €

6(2)) the following diagrams are in Dg.

(ae ae Lae LA
x x Os(y)
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(ui, y2) 4 4(y1, y2) (yi, y2) 7B y2
Poi \F | lg

v1 7 © f(y) t(y1,y2) —g— Pa(y2)

and for every (y1,y2) € ®(2), Le has the cone

(y1, y2) — fe Y2
Poi |F

Y1 A ® f(y1)

Given a left exact category C we are going to consider models I’: Sg + C. We

will denote (x) by I,, similarly P(y) by Py and I'(yi1,y2) by Pury.

When we have a pretopos P instead of just a left exact category and a model

T.: Ss ~ P we can induce arrows 9,~ : Lyeoay ly > Usree(o) Pz such that the

diagrams

li
ry tL Pe f(y) Ry Ig Poy)

by | | 2@ f(y) te | 2Gg(y)

(1.2) Uveor) Py —— Usesio) ls Lyeoay Py ~ Lseo(0) Ps

commute. Then we can consider the relation generated by (y,~), that is, the image

wve.0) U-eo(0) Ps X Urea) Vz

ee oe
Proposition 1.26. Given a pretopos P, a model ® : S — Seto and a model. :

Lyeo1) ry

So — P, induce y,v : yeaa) Py 7 Usrea(o) Ps as above. The relation generated by

(y,w) is an equivalence relation.

Proof. Induce p : [reo@) Fe + Lye) ly such that for every z € (0) the diagram

le 1Gr(zx)

L-<e(0) r, —_p Lyeo1) ly
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commutes. Since the ae

WN. \ In\, /N9
lr,

commute we have that yp = MT coco) P= = wp. it follows from Lemma 1.12 that the

generated relation is reflexive.

Similarly induce o : [yeoa) ly > Uyeoay Fy such that for every y € (1) the

diagram

ry I's DP 9s(z2)

by s(y)

Lyeoq) Py —— Uyeory Vy

commutes. It is easy to show that the diagram

Lyeo1) ry

L-eo(0) V's ri Lyeoay Ty eo L-<o0) Ps

commutes. Then by Lemma 1.13 the generated relation is symmetric.

For z € ®(0) denote by (2), the set {(y1,y2) € BI: 2)|®f(y2) = x}. By Lemma

1.10 we have that

by lpr:

LU (y:,42)€(2)s Dy ye AT pia) Lyeos-1(2) ry
(ty, 'por) (Pf)

Lyeo9-1(2) Py Ta) De

is a pullback. It follows by Lemma 1.11 that

dy Vp;

Uw sy2)€ (2) Pyiye = i! Lee 1) li
(iy, por) | (Tf)

Lyeoay Py zeo(o) P
(Tg)
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is a pullback. So induce 7 : [Hy y.)eo(2) Pury > Lye) T, such that the diagram

Dy, XP Py, Ut Detar v2)

4(yi,u2) 2ot(yi.v2)

Ly, yz) €®(2) Dyiye T Lycee) ry

commutes for every (yi, y2) € ®(2). It is easy to see that the diagram

(ty. P12) ty, porLyeoqy Py = Lyiv2)€0(2) Pury. (in Tow) Lyeoa) Py
p |7 ?

Lz €4(0) Dr, wp Lyea) ly v7) Lz€(0) i=

commutes. Then by Lemma 1.14 the generated relation is transitive. Oo

Now, for a left exact category C the objects of F(C) are pairs of models

(5D. Sety, Set).

We are thinking that the pair (®,I°) represents the quotient of the equivalence relation

(os Pf)
generated by []yco1) ry a, ara L,ceo

toa(y) lg
asking for finite limits in C.

)T',, but this is not in C since we are only

Now, for the arrows in F(C) we need to retain only the information given by

f and g. To do this we consider the graph H = 1—=0 and regard it as a limit
g

sketch where the set of commutative diagrams and the set of limit diagrams are

both empty. That is, we consider the sketch JT = (H,0,0). We have an obvious

sketch arrow i: JT — S. We are also going to use the sketch J = (1,0,0) and

the sketch morphisms ies walk Given a model ® : S — Sety we can define the

graph H whose set of nodes is (1)[] (0) and with arrows f : y > ® f(y) and

g:y — %g(y) for every y € ®(1). Then let 7g = (H»,0,0). In the same fashion let

Too = (Hoo, 0,0) and Zo: = (Ho, 0,0) where Hp is the discrete graph with nodes

(0) and Ha, is the discrete graph with nodes (1). We have the obvious sketch

arrows 7¢ — So,Za0 — Te and Za: — To.
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Given models 6,U : S — Seto, an arrow h: $2 — Wi of models induces an

obvious h : Tg + Ty. Suppose we have two pairs of models (s— Seto, Sp—+C)

and (S—> Seto, Sy 4c) and a pair of arrows of models

T : S To Se
\r

i b/ ® h g| C

Let’s take a closer look at what these arrows are. h is a pair of functions making the

diagram 0(f)

of da
v(f)

Va H(0)

sequentially commutative. Then o gives an arrow oz : T, > Angz) in C for every

z € 0(0) and an arrow cy: T, > Any in C for every y € ®(1) in such a way that

the diagram

r r
Peg(y) z ry ui

obg(y) gy of f(y)

Agq(i1(y) “an Ani(y) AR Ao f(h1(y))

Co f(y)

commutes for all y € (1). What this represents in our informal discussion is a

sequentially commutative diagram

Lec) Py Lao) Ps

Lwqay Ay > Lway Ax

that would induce an arrow between the coequalizers. There is, of course, no unique

way to induce arrows between coequalizers so we will need equivalence classes. The

definition is as follows.
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Given a left exact category C let F(C) be the category whose objects are pairs

of models (gwen, So key, A morphism

(s-*. Set), Ss++C) 5 (s—» Seto, Sy 2.)

is an equivalence class [(h,7)| such that (h,@) are as in 1.3. The equivalence relation

is defined as follows, (h,a) ~ (k,7) if there exist morphisms of models d and 6

0
va S To0 So

“I

l ® d | Cc
al fa

(1.4) S 77 Seto Ty; —— Sy

such that the following diagrams

OL

atl. (0 Ano(z)

NA" OSA
commute. We show that ~ is an equivalence relation. Given (h,o) define d =

((0) ee (0) Ea (1)) and for every x € 0(0) define dz as the composition

(1.5)

ar
DP, — Ano(z) —— Aer (no(z)):

With these definitions it is clear that (h,o) ~ (h,o). Suppose now that (h,a) ~

(k,7), then there exist d and 6 with the corresponding properties above. Define

d' = (®(0) 4 gy 1)), and é"(x € ®(0)) as the composition

6x As
Te BD ay Dig (in(e))

It is not hard to see that d' and 6’ satisfy the conditions for (k,7) ~ (h,o). Suppose

now that (h,o) ~ (k,7) and (k,7) ~ (I,@), with d and 6 guaranteeing the first
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equivalence and d’, 6’ the second. Then there exists a unique arrow ®(0) — (2) that

makes the diagram

d'

(0) S)

; S 4) Hwy
Vrr | |v
W(1) —— W(0)

commute. For every z € (0) there exists a unique arrow T, > Ageya(z) that makes

the diagram I
©.

r, ~

a Ay.

6: Agz)a'(2) Py Aaz)
L

Apo1 Af

+ Age) ‘a Avya(z)

Ut
commute. Define d’ = (®(0) — (2) —— W(1)), and for every x € (0), define 6”x

as the composition

At
DT, > Aacz)a'(z) —— Avi(a(c),a"(2))-

It is easy then to show that (h,o) ~ (1,6).

Composition in F(C) is defined as follows. Given

its composition is simply [(kh,7)]. It is not hard to prove that the composition is

well defined. It is clearly associative and the identity morphism of (®,T) is [(1,1)].

If P is a pretopos we know from Proposition 1.26 that for any object (S kp Seto,

Set+P) in F'P we obtain a pair of arrows (see 1.2) [41 vo Lo) fz whose

generated relation is an equivalence relation. This in particular means that the pair

: ? .
of arrows has a coequalizer []g(1) ly —> Lo Ps I (the quotient of the generated
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equivalence relation). Given a pair (h,o) as in 1.3 we obtain a commutative diagram

yp

Lei) Vy D Layo) P -U

(in(y) TY) (tho(2)7) tin)
Y~ u!

v— or Ly (0) Ae: ——> U!Hwa) A

therefore we can induce t(,,,) above making the diagram commutative.

Proposition 1.27. With the above notation, if (h,o) ~ (k,T) then tino) = t(k,7)

Proof. Let d and 6 be as in 1.4 such that the corresponding diagrams commute

making (h,o) ~ (k,7). Consider the arrow []g,o) p, aera) Hwa)A
commutativity of 1.5 we have that the diagram

y Using the

ULOIGNT © a ox

dL | Pr Ae | A

commutes. Since u coequalizes (y’, 7’) it follows that

(Zpo(z)

iat ns a =
commutes. Therefore []6(o) P's a oer
done. Oo

—— U’ also commutes. Since wu is epi we are

(k,7)

Proposition 1.28. For any small left exact category C the category FC is equivalent

to the category (Seto) con.

Proof. Define G : FC — (Set©”).o, such that any object (®,P) in FC the

diagram

) Hee (Tf)

I et. (eq(yyC(-, Pg) I (-.Ps)) —~ (8,1)(1) ) a0)
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is a coequalizer. The coequalizer exists as a consequence of Proposition 1.26. Given

[(h,)]: (®,T) > (W,A) define G([(h, 7)]) as the induced arrow such, that

LHe,o) C(., ls)

Ciore(Set” onl 6 Cl ox))) G([(h, 7)])

G(®,T)

commutes. It follows from Proposition 1.5 that G[(h,a)] is well defined.

In the other direction define H : (Seto)... — FC as follows. For every K

in (Set@”).., choose a finite set ®(0), an object [, for every x € (0) and an

"1

epimorphism []g@) C(-,'2) + K. Consider R— Loo) C(_,T,), kernel pair of
T2

this epimorphism. Since R is compact we can choose a finite set (1), an object Ty

in C for every y € ®(1) and an epimorphism []g(1) C(-, 'y) ——+» R. We obtain then

a pair of arrows

Y

Tl ean) Il eure)
(1) > (0)

whose generated relation is the equivalence relation (71,72). We can then find func-

tions Of, @g : (1) — (0) and arrows ee ee for every y € (1)
such that the diagrams

CLT,)—"> Ihw Ch) O(-,Ty) —*~ Loa CT y)
C(.,Tf) ¢ C(_,Tg) v

C1. Tos) Ty Ley C(-, Ps) ls Poo) Heo) C(-, Ps)

commute. Since (r1,T2) is reflexive and []91) C(-, 'y) ——> R epimorphic we can

choose a function ®r : (0) — (1) and arrows [r : C, — De,(z) such that the

diagrams
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commute

Similarly, using symmetry and transitivity we can define the rest of the elements

necessary to obtain an object (®,IT) of FC. Define then H(K’) = (®,T°). Given an ar-

row wp: K > K’ in (Set©”),.,, assume H(K’) = (W, A). Since [yoy C(-, Aer) > A"

is epimorphic there exists a map K — []ywo) C(-, Az’) such that

Na
LUwo) C(-; Az’)

K K'

commutes. This induces an arrow

[I] et.l.)—— [| Cf, Ae).
(0) (0)

Therefore we can find a function h0 : (0) — W(0) and arrows ox : TT, — Ajgcz) for

every z € (0) such that the diagram

tho(x) TL

Hao) C(-, Ps) al Luo) C(-, Az’)

K 7 a

commutes. There exists then an arrow R — R’ such that the diagram

R Leo) C(-, Tr)

R’

Luo) Cle Az")

is sequentially commutative. Since [[y1) C(-, Ay’) > & is an epimorphism we can

find an arrow [Jeq) C(-,T'y) > Hwa) C(-, Ay’) such that the diagram

Usa) C(-, Py) —~ Uway CC Ay’)

R R
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commutes. This gives a function hl : ®(1) + (1) and arrows cy : Ty > Aniy) for

every y € ®(1) such that

by trA(y)

Lo) C(-.,Ty) —+ Llwq) C(-, Ay)

commutes. It is easy to show that h and o as defined above are arrows of sketches

as in 1.3. Define H(w) = [(h,c)]. It is not hard to see that if we change the choices

made above to produce (h,a) we obtain an equivalent pair. G is the pseudo-inverse

of H O]



Chapter 2

Ultracategories

The concepts of pre-ultracategory, ultramorphism, ultracategory and Makkai’s theo-

rem (Theorem 2.3) all are taken from [15].

Given a pretopos P we want to consider the category Mod(P) of models of P.

Mod(P) has filtered colimits (and they are calculated pointwise) but in general we

can not guarantee the existence of any other kind of colimits. The situation for

limits in Mod(P) is even worse. However, Mod(P) has ultraproducts and they are

pointwise. That is, given an ultrafilter (1,2) (a set J with an ultrafilter U on /) we

have that for every family (M;),; of models of P the ultraproduct lim [] Mj is a
JEU;ZET

model of P, where the products and the filtered colimit are taken in Set?. So we

have a functor [UU] : (Mod(P))! + Mod(P) that assigns to any /-family of models

its ultraproduct. Pre-ultracategories are an attempt to capture this situation.

2.1 Pre-Ultracategories

Definition 2.1. A pre-ultracategory A consists of a category A together with a

functor [U]4 : A’ — A for every ultrafilter (/,1/). We refer to the functor [YU], as

the ultraproduct functor associated to U in A.

Given pre-ultracategories A and B, a pre-ultrafunctor fF: A — Bisa functor

40



4]

F: A — B together with a natural isomorphism [U, F]

[UJ
A! Sw

F! [U, A/ F

I

Bt”

for every ultrafilter (/,/). Pre-ultrafunctors compose in the obvious way.

Given pre-ultrafunctors F,G:A- Bra pre-ultranatural transformation T :

F = Gisa natural transformation tT: F ~ G: A — B such that

Ta
FolWla Gola

(U, F] (U, G]

[U\p oF! War! [U\poG?

commutes. Pre-ultranatural transformations also compose in the obvious way.

Let PUC denote the 2-category of pre-ultracategories, pre-ultrafunctors and pre-

ultranatural transformations whose underlying categories are categories in the second

universe.

Whenever we have a pre-ultracategory A, an ultrafilter (J,/) and a family (Ai),

in A! we denote [U]a (Ai) by I]; Ai/U or sometimes by TL Ai/U. Similarly, if (f:) is

a morphism in A! we have [UY]. (fi) = I] fi/U.

If P is a pretopos then Mod(P) is clearly a pre-ultracategory Mod(P) with the

usual ultraproduct functors. In particular we can consider the pre-ultracategory Set

of sets together with the usual ultraproduct functors.

2.2 Ultragraphs and Ultramorphisms

The ultraproduct defined above for models is a combination of limits and colimits,

therefore we are in very short supply of canonical maps in or out of an ultraproduct

(as oppose to an honest limit or colimit). Here is where ultramorphisms try to fix this
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lack. But before considering the concept of ultramorphism we need the concept of

ultragraphs. Ultragraphs are to ultraproducts what limit sketches are to limits. That

is, in an ultragraph we want to specify nodes that will represent the ultraproduct of

other nodes (the same way as we want some nodes in a limit sketch to represent the

limit of some other nodes).

Definition 2.2. An ultragraph G is a graph G together with a partition G! UG? of

the nodes of G and such that for every 8 € G° we have assigned a triple (1g,Ug, 9a)

where (Jg,Ug) is an ultrafilter and gg : Ig — G! is a function. The nodes in G/ are

called free nodes and the nodes in G? are called bound nodes.

Then an ultradiagram is the equivalent of a model of a limit sketch. That is, an

ultradiagram is a diagram that assigns to a bound node an ultraproduct of the images

of the nodes associated with the bound node.

Definition 2.3. Given a pre-ultracategory A and an ultragraph G, an ultradiagram

D:G-— Aisa diagram D: G — A together with an isomorphism

D(8) —— Tl, D(ga(¢))/Us

for every 8 € G’.

Given ultradiagrams D,D' : G > A a morphism g : D > D" is a natural

transformation ¢ : D — D’ between diagrams such that the square

D(8) —“—~ Ty, Dae (i) (Us
a8 | T11, 7(gs(i)) Ue

DB) —g— Thi, Dao) es

commutes for every 8 € G’. Morphisms between ultradiagrams compose in the

obvious way, so we have a category U D(G, A).

If we have a pre-ultrafunctor Ff : A — B and an ultragraph G then it is not

hard to see that F induces a functor UD(G,F) : UD(G,A) — UD(G, B) by

composition.



43

Given a node k in G we define the functor ev, : UD(G, A) — A as evaluation

atk, that is evg(D) = D(k) and ev,(c) = ck for every ¢: D > D’ in UD(G, A).

We have the following corollary of Los’ theorem 1.4

Corollary 2.1. For any ultragraph G the category UD(G, Set) is a pretopos and

the forgetful functor U D(G, Set) + Set is elementary. Oo

We are ready now for the definition of ultramorphism.

Definition 2.4. Given a pre-ultracategory A, an ultragraph G and nodes k and / in

G an ultramorphism 6 of type (G,k,/) on A is a natural transformation 6 : ev, —

ev: UD(G, A) — A.

An example of an ultramorphism on Set is the following. Let (I,U/) be an ultra-

filter and f : J > J be a function. Consider the ultrafilter V = {Jo C J|f~'Jo € U}

on J. Define the ultragraph G as follows. G> = {3,7} and G/ = J. There are no

arrows in G. Define (/g,Ug,93) = (1,U,f : 1 > J) and (1,,U,,9,) = (J, V, ids). We

want to induce a natural transformation 6 : ev, — evg. Given a family (A;),J of sets

let 6(A;)y : TT A;/V - IL As(2)/U be the unique map that makes the diagram

jeu Ay “o_. TTA; /V

A (i) 8(Aj)u

Mies-1yp Asa > TA s(2)/U
f-Jo

commute for every Jo € V. It is not hard to show that 6 defined this way is a natural

transformation 6 : ev. > evg. That is, 6 is an ultramorphism. As a particular case

observe that when J = 1 we obtain the diagonal function A — A” for every set A.

Denote by ASet the set of all the ultramorphisms on Set. This makes ASet a

set in our second universe.
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2.3 Ultracategories

Definition 2.5. An ultracategory A consists of a pre-ultracategory A together with

an ultramorphism 64 : ev, — ev; : UD(G,A) — A for every 6 : ev, — ev :

U D(G, Set) — Set in ASet.

Given ultracategories A and B an ultrafunctor F : A > Bis a pre-ultrafunctor

F:A-—B such that Féa — dépUD(G.F).

Given ultrafunctors F,G: A — B an ultranatural transformation ga : f+ G isI
simply a pre-ultranatural transformation a: F > G.

Ultrafunctors and ultranatural transformations compose in the obvious way and

we have a 2-category UC whose objects are ultracategories whose underlying pre-

ultracategories belong to PUC, ultrafunctors as 1-cells and ultranatural transforma-

tions as 2-cells. We have a locally full forgetful functor UC — PUC. When there is

no risk of confusion we will omit the corresponding underlining for pre-ultracategories

and ultracategories, the context should make clear which one we mean.

If P is a pretopos we can give the pre-ultracategory Mod(P) an ultracategory

structure as follows. First notice that for every ultragraph G and every P € P we

can define the functor UD(G, Mod(P)) — UD(G, Set) such that D + D(_)(P)

and 0 + o(_)(P) for any ao: D — D’ in UD(G, Mod(P)) where of course we have

that D(_)(P)(k) = D(k)(P) for any node k € G. Given an ultramorphism 6 : ev, >

ev, : UD(G, Set) > Set define 6moap) : evr > ev): UD(G, Mod(P)) — Mod(P)

such that for every P € P (édmeaqp)D)P = 6D(-)P. In this way we obtain the

ultracategory Mod(P) of models of P.

Proposition 2.2. For every ultracategory A the category UC(A, Set) is a pretopos.

Furthermore, the corresponding finite limits and colimits are calculated pointwise.

O

We finally arrive at the main theorem of [15], Makkai’s theorem. Let P be a

small pretopos. For every P € P we have that the functor evp : Mod(P) — Set

is an ultrafunctor evp : Mod(P) — Set. This fact allows us to define the functor

ev: P + UC(Mod(P), Set) such that P + evp. |
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is an equivalence.

Notice first that according to Lemma 1.15 it suffices to show that ev : P —

UC(Mod(P), Set) is subobject full, conservative and that every object in the cate-

gory U C(Mod(P), Set) has a finite cover via ev. We start with subobject full.

Assume first that we have an object P of P and a monomorphism Tf : F' — evp

in UC(Mod(P), Set) in which for every model M in Mod(P),7M : FM — MP

is actual inclusion. Notice that in this case for every ultrafilter (/,/) and any family

(M;)1 in Mod(P)' the commutativity of the diagram

F(T M;/U) 4 FM) 5 FM,/U

r(I] ma Van
I] M; P/U

implies that [U, F](M;,) : F(T Mi/U) - TF M;/U is an identity. Let S = {Q>>P

in P|FN C NQ for every N in Mod(P)}

Lemma 2.4. For every M in Mod(P), FM = (\q->4p\es MQ

Proof. Let M € Mod(P). Clearly FM C f\g»+pyes MQ. So suppose a €

Mepyes MQ. Define T = {(Q>-+P) in Pla ¢ MQ}. Clearly SOT = 9, thus

for every (Q>>P) € T we can choose a model Ng in Mod(P) and an element

bg € FNg — NaQ. Observe that (0--P) € T and if Q;->P,Q2>>P € T then

Qi V Qo P €T. Given Q>>P € T define [(Q>>P) = {Q’- PET|Q—-P <

Q'->P as subobjects of P}. For any family {Q;--~P}%, of elements of T we have

M1 1(Q:-- P) = T( V1 Qi P). Therefore there exists an ultrafilter % on T such

that for every Q>>P € T we have that 1(Q>>P) €U.

Consider (bg)z € []7 NoP/U.

Let R->P in P and assume that (bg) € []7 NaR/U. We want to show that a €

MR. Suppose not, then R-+P € T and T(R>>P) € U. Since (bg)zr € [Iz Na P/U

there exists J € U such that for every Q->P € J, bg € NoR. Since JNT(RP) €

U we have that there exists (R’-+P) > (R>>P) such that by € Na R. Since
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NaRC NpR' we have br € Np R’. This is a contradiction, so we can conclude that

aé MR.

We have showed that for every R->P, (bg)r € Ilr NoR/U implies a € MR.

Therefore by Theorem 1.21 there exist an ultrafilter (7,V) and an arrow

h: J] No/U— MY
T

in Mod(P) such that hP(bg) = 6P(a) where 6: M — M’ is the diagonal. Since

(bo) € F(T Ne/U) we have that (a); = 6P(a) = hP(bg) € F(MY) = (FM).

Therefore there exists Ip € V such that for every i € Io, a € MP. That is, a € MP.

O

Lemma 2.5. With the same notation as the previous lemma, there exists R-PES

such that F = evp.

Proof. Suppose not. That is, assume that for every Q->P € S there exist a

model Mg in Mod(P) and an element ag € MaQ—- F(Mg). Now, (lp: PP) ES

and if Q; > P,Q2?P € S then Qi A Q2>>P € S. For every Q>>P € S define

(QP) = {Q’ oP € §\(Q'P) < (Q +P) as subobjects of P}. We have that

(Qi P)) = (Aki Qi P). There exists then an ultrafilter W on S such

that for every Q~>P € S we have |(Q>>P) € W.

Consider (ag)s € Ils MaP/W.

Let R->P € S. We have that for every R’->P € |(R->P), ap € MpaR Cc

Mp R. That is (ag) € [1s MoR/W. Therefore (ag) € (Rr pyes IIs MgR/W. So

according to the previous lemma we have that (ag) € F(IIs Mg/W) = Ils FMa/W.

This means that we can find (Q>+P) € S such that ag € FMg. This is a contra-

diction. 0

Consider now an arbitrary arrow o : G — evp in UC(Mod(P), Set). Consider

its image
a

G evp

Nn

H

Since images in UC(Mod(P), Set) are pointwise we may assume that for every M

in Mod(P), mM : HM — MP is really an inclusion . Then there exists RP
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such that H = evr. If o : G > evp is a monomorphism we obtain that e: G — H as

above is an isomorphism in UC(Mod(P), Set). We have proved

Proposition 2.6. [f P is a small pretopos then the functor

ev: P + UC(Mod(P), Set)

is subobject full. oO

We turn our attention now to ev being conservative. Given a small pretopos P

we can consider the precanonical category J on P and form the category Sh(P, J).

Using Theorem 1.4 and Proposition 1.5 we can find J in Seé and a surjection

f*

Set/I*= Sh(P, J).
*

Notice that we need P to be small to apply 1.4. We have then that the composi-

tion PSAP, J) Lf Set/I is elementary and conservative, where y is the usual
functor.

Proposition 2.7. If P is a small pretopos then ev : P — UC(Mod(P), Set) is

conservative.

Proof. Suppose we have two subobjects @->P and R--P of an object P in

P such that evg = evr in UC(Mod(P), Set). Take the functor p—..sh(P, J)

Set/I defined above and define M; = (P a Sh(P, J) SL. Set/I a Set) for every
i € I. Then for every 7 in J we have that M; is in Mod(P) and evgM; = evrM,.

Therefore 7* f*yQ = 2*f*yR for every i € J. Then clearly f*yQ = f*yR. since f*y is

conservative we conclude that (Q-+P) = (R»>>P) as subobjects of P. oO

Now we turn our attention to the other part of the proof namely, that every object

F in UC(Mod(P), Set) has a finite cover via ev. Let M be a model in Mod(P)

and z € FM. If we are hoping to find a finite cover for F via ev we should be

able to find an ultranatural transformation ® : evp — F' for some P in P such that

xz € Im(®M). That is to say, there exists a € MP such that @M(a) = x. Notice

that if this happens then for any two arrows h,k: M — N in Mod(P) we have that

if hP(a) = kP(a) then FA(z) = Fk(z).
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Definition 2.6. Given F': Mod(P) — Set, M in Mod(P) and P in P we say that

an element a € MP is a support for an element z € F'M if for every pair of arrows

h,k: M > N in Mod(P) we have that hP(a) = kP(a) implies that Fh(x) = Fk(2).

We say that x € F'M has a support if there exist an object P in P and an element

a € MP that is a support for z € FM.

We will show that if a € MP isa support for x € FM where F is an ultrafunctor

then there exist a subobject Q>>P in P with a € MQ and an ultranatural trans-

formation ® : evg > F such that @M(a) = x. Since we already know that every

subobject of evp in UC(Mod(P), Set) is of the form evg for some subobject Q of

P in P all we need is a monomorphism G — evp and a transformation UV: G— F

with c € ImWM. Sucha UV: G — F is called a partial P-cover of F that contains z.

Lemma 2.8. An element x € FM has a support if and only if there exists a finite

family {(a; € P;)}"_, such that for every pair of arrows h,k: M > N we have that

AP;(a;) = kP;(a;) for every 1 =1,..,n implies that Fh(x) = Fk(z).

Proof. The only if part is clear. For the if part simply consider (ai,..,an) €

in MP, ~ MUTT Fi) O

Proposition 2.9. Given F in UC(Mod(P),Set), M in Mod(P) we have that

every x € FM has a support.

Proof. Suppose not. That is suppose that for every finite family d = {(a; € P;)},

there exists a pair of arrows hag,kg : M — Ng in Mod(P) such that haP;(a;) =

kaP;(a;) for every i = 1,..,n but Fh(x) # Fk(x). Let D be the set of finite families

of the form d = {(a; € P;)}%, ordered by containment. For every d in D chose

a pair of arrows hag,kqg : M — Ng satisfying the property written above. Denote

T(d) = {d' € D\d Cc d'}. Now, M1 = 1 and therefore D is nonempty, and for every

d,d' € D we have that T(d) 9 T(d') = t(d Ud’). Therefore there exists an ultrafilter

U on D such that for every d € D we have T(d) € U. Consider the diagram

IIp ha/U

To Faye LL Na
uM 2M yu
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where 6 is the diagonal ultramorphism. Given a € MP consider d = {(a€ MP)} €

D. Then for every d’ € T(d) we have that hy P(a) = ky P(a), therefore we have that

(ha P(a))aeta = (ka: P(a)) deta in IIb NaP/U. Therefore

[] ha/lo 6M =] ku/U 0 5M.
D D

Consider the following diagram
, Fp hal) .

remy | ) Flo J} F (Ip Na/U)

rN, (U, F]\(M)p [U, F’](Na)p

6FM
, Hp FhalU

(FM) Tp Fru Tp FNa/U

The left triangle commutes because F is an ultrafunctor and the right square clearly

commutes sequentially. Therefore both compositions in

Ip Fha/U

ru pm a TF Nau
Ip Fka/U “py

are equal. We then have that (Fha(x)) = (Fka(x)) in [Ip FP Na/U. Since we assumed

that Fha(x) # Fka(x) for every d € D we have a contradiction. oO

For the next couple of propositions we use the notation from Proposition 1.20.

Lemma 2.10. Given F : Mod(P) — Set, P in P,r€ FM andaeé MP, we have

that a € MP is a support for x if and only if the only element of O(M,a)(1) is a

support for x € Fo(—o Ap)(O(M,a)) oO

Proposition 2.11. Let F : Mod(P) — Set be an ultrafunctor, P be an object of

P, M in Mod(P),a€ MP andz € FM. If there exist a subobject r-—-1 in Pie

and an ultranatural transformation © : ev, > F o(—oAp) such that O(M,a)(r) = 1

and x € ImO(M,a) then there exists a subobject Q-+P with a € MQ and an

ultranatural transformation WU : evg > F such that VM(a) = x

Proof. Consider a diagram
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in P/P and assume we have an ultranatural transformation ® : ev, + F.o(—o Ap)

satisfying the requirement of the proposition. By the definition of © it is clear that

a € MQ. Define W : evg — F as follows. Given N in Mod(P) and b € NQ we have

O(N, b) : O(N, b)(r) — FN. Since b € NQ we have that O(N, b)(r) = 1. Define

UN(b) = ®O(N, b)(e) (where e is the only element of O(N, 6)(r)). It is not hard to

see that W is an ultranatural transformation and that VQ(a) = 2. Oo

The proposition above and the lemma preceding it tell us that when we have a

support a € MP for z € F'M it is enough to assume that P = 1 and that a is the

only element of M1. Now, e € M1 is a support for c € F'M if for every pair of

morphisms ua N in Mod(P) we have that Fh(r) = Fk(zx)
If F : Mod(P) — Set is a pre-ultrafunctor consider the category Mod*(P) =

Mod(P){j El(F), where El(F) is the category of elemnts of F' with forgetful functor

El(F) — Mod(P). If M is an object of Mod(P) we denote it by (M,*) when we

see it as an object in Mod*(P), whereas an object (N,x) in El(F’) is also denoted

by (NV, 2x) when seen as an object of Mod*(P). We say that (N, x) is a proper object

if x # *, otherwise we say it is improper. We give Mod’(P) a pre-ultracategory

structure as follows. If (/,U) is an ultrafilter and ((Mj, z;)); is an J-family of objects

of Mod*(P), consider the set J = {7 € I|z; # +}. Define

(TM; /U, *) if J ¢U

(1 M,/U,(U, F(M)-"((2;)s)) if JEU
[[](%, 2) /U =

and if (f;) : ((Mi,2:)) > ((Ni,yi)) is a morphism in Mod*(P)! then (f;) + T] f;/U.

We have a forgetful preultrafunctor Mod*(P) — Mod(P) such that (M,r)» M.

If we carry out the construction above with 7d: Set — Set instead of F we get

a pre-ultracategory that we denote by Set”.

The preultrafunctor F : Mod(P) — Set induces a functor F* : Mod*(P) —

SetTM such that F*(M,x) = (FM,2x) and F*h = Fh for every h: (M,x) > (N,y) in

Mod"*(P). F* turns into a pre-ultrafunctor if we define [/, F*]((M;, x;)) = [U, F](M;)

for every ((M,,2;)) in Mod*(P)'.

Lemma 2.12. Given a pre-ultrafunctor (ultrafunctor) F : Mod(P) > Set we have

that subobjects of F in PUC(Mod(P), Set) (UC(Mod(P), Set)) are in one to one
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correspondence with classes C of objects of Mod*(P) that satisfy the conditions 0)-3)

below

0) For every M in Mod(P) we have (M,*) €C.

1) If (M,x) € C and f : (M,x) - (N,y) is a morphism in ModTM(P) then

(N,y) €C.

2) For any ultrafilter (1,U) and any object ((M;,2;)) in Mod*(P) with (Mj, x;) €

C for everyt € I we have that [](Mi, 2;)/U € C.

3) If (I,U) is an ultrafilter and ((M;,x;)) is an object of Mod*(P)' such that

TI(M;, x;)/U €C then there exists a set J CU such that for every) € J, (M;,x;) €C.

Proof. Start with a subobject G HY . F. Define the class

Cg = Mod(P)[]{(M,z) € El(F)|z € ImpM}.

Clearly Cg satisfies 0). If (M,z) € Cg is proper and f : (M,zx) — (N,y) in Mod*(P)

then, since x € ImyM and the diagram

FM FN
Ff

commutes, we have that y € ImywN. If (M,z) is improper then (N, y) = (N,*) € Ca.

Therefore Cg satisfies 1). Let (J,U) be an ultrafilter and ((M;,2;)) be an object in

Mod*(P)'. Let J = {i € Ila; # +}. If J ¢ U then clearly [](Mj,2;)/U € Co.

Assume then that J € YU. Then for every 7 € J we have that x; € ImpuM;. Since yu

is a pre-ultranatural transformation we have that the diagram

cu m,u) 2M) emu

MT] M;/U4) Tl eM;/U

(2 PUM) Ta ay MIM

commutes. Then it is clear that [U, F](M,)~'((z;)7) € Imp] M;/U, that is Cg

satisfies 2). For 3) Assume that J](Mi,2;)/U € Cg. if J = {2 € I|z; 4 *} EU then
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for every i € I — J we have that (M;,2;) € Cg. Suppose then that J € U. We have

that (U, F](Mi)~1((z;)) € Imp(T] M/W). We then can find an element (yx)x €

TIGM;/U such that w(T] Mi/U)((U, G](Mi)“"((ye))) = (U, F)(Mi)“*((25)). This

means that [] wM;/U((yz)K) = (zj)y. Therefore there exists a set L C JN K with

L €U such that for every £ € L we have uM;(ye) = ze. That is for every € L we

have that (Mz, 2) € Cg so we have 3). It is easy to show that if the classes determined

by two subobjects of F coincide then they are the same subobject.

Assume now that we have a class C of objects of Mod*(P) that satisfies 0)-3)

above. Define Ge : Mod(P) > Set such that Gc(M) = {x € FM|(M,z) €C}.

If hk: M > N is a morphism of models then condition 1) guarantees that Fh :

FM — FN restricts

rm 4. pn

| |
GeM Ge GeN

With these definitions we have that Ge is a subfunctor of F’.

We want to define [U,G](Mi)r : Ge(I1 Mi/U) — T]GeMi/U such that the dia-

gram 2.1 commutes. Let z € Gc([] Mi/U). We have then that ([] Mi/U, 2) € C.

Let (z;)z = (U, F](Mi)1(z). Then by 3) there exists K C J,K € UW such that for

every k € K, (My, xx) € C. Therefore (x.)K € []GceM;/U. Define [U, G](M;)(z) =

(x,)«. Since [U, F](M;) is an isomorphism it is easy to see that [(U,G](M;) is mono.

Use 2) to show that [U,G](M;) is onto. This gives us a subobject Ge of F’ in

PUC(Mod(P), Set). It is easy to see that the association C + Ge, G Ce

between classes satisfying 0)-3) and subobjects of F in PUC(Mod(P), Set) are in-

verses. It is not hard to see that if F is an ultrafunctor then G¢ is also an ultrafunctor.

O

Assume now that the only element of Mol is a support for zo € FMo. A diagram

of the form
G— ev, 21

®



53

is the same thing as a subobject G->ev, x F ~ F that satisfies z, x2’ € GM implies

x =z’. That is, we need a class C satisfying 0)-3) above plus

4) (M,x),(M,z') € C with x, 2’ € FM implies that x = 2’.

We also want the class C to satisfy

5) (Mo, Zo) € C.

For the proof we will have to consider bigger and bigger small subcategories of the

category Mod*(P). Here is the definition of the small subcategories we will need.

Definition 2.7. Let P be a small pretopos and F : Mod(P) — Set be an ultra-

functor. A pair (C,S) is called a small approximation of Mod*(P) provided that

i. C is a small subcategory of Mod*(P)

ii. S is a set of triples of the form (/,U, fae Ob(C)) where (J, 2) is an ultrafilter.

iii. For every (1,U,g) € S the ultraproduct [J] 9(z)/U is in C.

iv. For every g : {0} > Ob(C) we have that ({0},2o,g) € S where ({0},U%o) is

the only possible ultrafilter over {0}.

v. If (I,U,g) € S and g’ : I > Ob(C) is such that

1500(C)- Mod"(P) + Mod(P)
g

commutes then (/,U,g') € S.

Let « be the cardinality of P (that is k = #(Ar(P))). We say that a small

approximation (C,S) of Mod*(P) is closed if it satisfies

vi. For every M in Mod(P) such that #M := #(Llpep MP) < « there exists

(N,*) € C such that #N <x and N~M.

vii. For every (M, *),(N,*) in C such than M = N (elementary equivalent) there

is an ultrafilter (1,1) such that (J,U,91),(1,U, 92) € S, with m : I > O(C) is the

constant map with value (M,*), g2 : I + Ob(C) is the constant map with value

(N,*) and M4 ~ NY,

Given a small approximation (C,S) of Mod*(P) a (C,S)-subobject of F’ is a

family C C Ob(C) satisfying 0)-3) above when 2) and 3) are restricted to elements of

S.

A partial cover of F relative to (C,S) is a (C,S)-subobject of F that satisfies 4).



Remark 2.1. Given a pair (C,S) satisfying i-iii we can always find a pair (C’,S’)

satisfying i-v and such that C is a subcategory of C’ and S C S’.

Remark 2.2. Given a small approximation (C,S) we can always find a small close

approximation (C’,S’) such that C is a subcategory of C’ and S C S’. This is

a consequence of the Keisler-Shelah isomorphism theorem that says that given two

models M, N such that M = N there exists an ultrafilter (7,2) such that M4 ~ N%.

We now show that for every small approximation (C,S) and any zo € F Mo with

support the unique element of Mol we can find a partial cover C of F relative to (C, S)

such that C satisfies 5). We start by putting (Mo,zo) in C. Notice that conditions

0)-2) can always be fulfilled by adding more and more objects to C, however condition

3) involves the choice of a set in an ultrafilter. We will make all the necessary choices

and repeat the process. In this way we can obtain aC that satisfies 0)-3) and 5) but

not necessarily 4). We will assume that for all possible choices we obtain a family

C that fails to fulfill 4) and we will get a contradiction. This process involves the

recursive construction of an ultragraph.

So let (C,S) be a small approximation of Mod*(P) and assume that e € Mol is

a support for 29 € FMo. Let « = #C and ap = k*.

We construct the ultragraph G and the ultradiagram D : G — Mod"*(P) as

follows.

For every (M,*) in C we put a node yy. We also put a node go. Define

GE = {yo} U {oml(M,*) is in C}
Gi=

No edges in Go

0, =0

Dp : Go — C is such that yo + (Mo, 20) and yu + (M, +).

Let 0 < a < apo and suppose we have made the corresponding definitions for all

a’ <a. Define

Gia = Us'<a Gi,
Ox = Ua'<a Gey
Gea = Unica Ga!

O<a = Unea Oa

Dea = Valea Da
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Let ©, be the set whose elements are of the form (a,/,U,g; f; J, V,g') such that

lL (J,V,g9') ES.

Il.g:I- Gt...

UL (1,U,1-2+GL, 2c) es.
IV. Ip = {7 € I|Dea(g(i)) is proper} € U

V. f : T] Deag(t)/U - II g'(7)/V is a morphism in C.

Notice that condition IV implies that [] Deag(t)/U is a proper object.

For every t = (a, 11,Uz, 913 ft; Jt, Vis 9:) € Oa take two nodes ;,7% and for every

j € J, take a node (t,j). Define then

G? = {Blt € Oa} U {ult € Oa}.

Gi = {(t,j)|t € O. and j € Ji}.

For every t € QO, put an edge % : ; — % in Gy.

Da(Bt) = T Deage(t)/Ut-

Dave) = 99) /Ve-

Da(t,j) = 94:(9).

Do(r1) = f.

Finally define G = Gz, and D = Dzq,. We have that G is an ultragraph and

D is an ultradiagram. Notice as well that D factors through C.

Next we make formal the concept of possible choices of elements of ultrafilters for

the family to satisfy 3).

Let © be a subset of O,,, and A = (A;)1ce@ be a O-indexed family of sets such

that A; € VY; for every t € ©. We define recursively what it means for t € O, and y

node of G to be A-accessible.

First, Yo is A-accessible.

For every M, yy is not A-accessible.

Suppose we know what it means to be A-accessible for t € Oc and 7 € Gey for

0<a< apo. Then

t € ©, is A-accessible if and only if {7 € I;|g:(z) is A-accessible} € Uy.

B, is A-accessible if and only if t is A-accessible.

Yt 1s A-accessible if and only if t is A-accessible.

(t,7) is A-accessible if and only if t is A-accessible, t € © and j € A.
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We say that Ass (At)o is regular if and only if for every t € Oca we have t € O

if and only if t is A-accessible. Define G(A 4) = {7 € Gly is A accessible}, and let

A = {A|A is regular}.

Notice that A is a meet semilattice. Given A = (A;)o and B= (B:)@: construct

C= (C;)e@” recursively as follows. Suppose we know already what 0” M O<, is and

that we have already defined C; for every t € O” NO... Then t € 0” NO, if and

only if t is (C,: t € O” N O<,)-accessible and define C; = A:N By € Vi. C= (Cr) ou

is regular and C = ANBin A.

Lemma 2.13. Given an ultradiagram E : G — Set anda € E(¢%o) there is an

ultradiagram E* : G — SetTM such that E*(yo) = (E(¢¥o),a) and the diagram

EE SetTM

Set

commutes, where U is the forgetful functor.

Proof. Define E*(yo) = (E(¢o), a) and E*(ym) = (E(¢m). *). Assume that E*(7)

has been defined for y € Gq. Let t € Og, define E*(S,) = J], E(g:(2))/U. Define

E*(y) = (E(4), 6) if 6 makes E(r;) a morphism E*(3;) > (E(+), 6

that there is a unique 6 with this property). Define E*(r;) = E(r,). Choose J € Y,

and a; € E(t,j) for every 7 € J such that b = (a;)y. Define E*(t,j) = (E(t,7), a;) if

j € J and E*(t,7) = (E(t,7), *) if 7 ¢ J 0

Lemma 2.14. Given A regular the family C = {(M,*) € C} U{D(y)|y € G(A)}

satisfies conditions 0)-3) and 5), where D : G — Mod*(P) is the ultradiagram

defined above.

) in Set* (notice

Proof. Clearly 0) is satisfied. Since yp € G(A) and D(vo) = (Mo, Zo), C satisfies

Assume (M,z) € C is proper. We show that there exists y € G/N G(A) such

that D(y) = (M,z). If (M,x) = D(f:) with t A-accessible, t € Oy, a < ao then

{i € I:|\ge(2) is A- accessible} € U;. Let t! = (a, Ii, Us, 943 tdaz; {0}, Uo, g’) where g’(0) =
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(M,zx). Then t’ € Og, t’ is A-accessible and we have D(t’,0) = (M,z). Clearly

(t’,0) € G/N G(A). The case D() = (M, 2) is similar.

) C satisfies 1): Let (M,x) = D(y) with y € G/N G(A) and h: (M,z) - (N,y)

in C. Suppose 7 € GL, with a < ao. Let t = (a; {0},Uo, 95h; {0},Uo, 9’) where

g(0) = 7 and g/(0) = (N,y). Then t € O,. Since ¥ is A-accessible we have that t is

A-accessible, this means that 9; and +; are also A-accessible. Clearly D(7) = (N,y).

That is (N,y) €C.

C satisfies 2): Let (1,U,g) € S and with g(z) = (Mi, 2) €C. If J = {2 € Ig(2) is

proper} ¢ U/ then clearly [] g(z)/U € C. Assume then that J €U. For every j € J let

1 € Ge. MN G(A) such than (M;,2;) = D(7;). Assume furthermore that (Mj,zj) =

(M;),x;") implies 7; = 7; for 3,7’ € J. Since the cardinality of {a;} < « there exists

a < a = Kt such that a; < a for every 7 € J. Let t = (a;1,U, 952d; {0}, Uo, 9’)

where g(i) = (i) if i € J, g(t) = ym, and g'(0) = J] D(g(2))/U. Notice that

TI D(g(i))/U = TI(Mi, 2:)/U. Now, t € ©, and for every 7 € J,7; Is A-accessible,

therefore t and (; are A-accessible. We have TI(Mi, z:) = D(f).

C satisfies 3): Let (Mj,z;) in C for i € J and assume [](Mi,2i)/U € C with

(1,U, ((Mj,2;:))) € S. If T](Mi,2:)/U € C is improper then the conclusion is clear,

so assume it is proper. Assume [](Mj,2;)/U € C = D(y) with 7 € Gin G(A) and

a < ag. Let t = (a, {0}, Uo, 932d; 1,U, ((Mi, z:))) € O. with g(0) = 7. Since ¥ is

A-accessible we have that t¢ is A-accessible. Since A = (Av)veo is regular we have

that t € ©. Then (t,7) is A-accessible for every j € A; and D(t,j) = (Mj;,2;) for

ZEA. O

Lemma 2.15. Given an ultrafunctor F : Mod(P) — Set,(C,S) a small approz-

imation of Mod*(P) and ro € F.Mo with support the only element of Mol. There

exists a partial cover C of F' relative to (C,S) such that (Mo, 20) € C.

Proof. Consider the ultradiagram D : G — Mod*(P) defined above. We have

seen that for A regular the family Cz = {(M,*)|(M,*) in C} U {D(y)|7 € G(A)}

satisfies 0)-3) and 5). If for some regular A the family Cx also satisfies 4) we are done.

So let’s assume that for every A € A = {B|B is regular } the family Cz does not

satisfy 4). Then for every A € A we can find nodes (A), 72(A) € G/M G(A) such

that D(y(A)) = (M z,x7z,) and D(72(A)) = (M;,2z,) are proper and rz, # Typ.
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(A), +y2(A) can be chosen in GinG(A) as a consequence of the proof of the previous

lemma). We know that A is a meet semilattice, so there exists an ultrafilter W on

A such that for every A € A, |(A) € W. We construct a new ultragraph G; as

follows. G, is obtained from G by adding a new bound node @ and assigning to it

the triple (A, W,g) where g(A) = (A). We define an ultramorphism 6; : ev,, >

evy : UD(G, Set) — Set as follows. Given an ultradiagram E : G; > Set consider

the ultradiagram E’ = Elg : G — Set and notice that E” essentially determines

E. We can assume E(£) = TL E'(71(A))/W. Let a € E(yo), construct BE’: G >

Set* as in lemma 2.13. If E”(y(A)) = (E(+1),a:(A)) define 5; E(a) = (a,(A))4 in

Tl E(71(A))/W. It is not hard to see that 6;E(a) # *, that it does not depend on the

choice of BE’ and that 6, defines an ultramorphism.

Similarly, using ~2(A) instead of ~(A) we obtain an ultragraph G, and an ultra-

morphism 62 : evy, > eve : UD(G2, Set) — Set.

Consider the ultradiagram ge C he Mod(P) where D was defined above and
U is the forgetful functor. We can extend DU to ultradiagrams

D,: G, — Mod(P) Dy: Gz — Mod(P)

such that D,(@) = Do(€) = [1 Mz/W and Di\¢ = D2\¢ = DU. Since 61, 62 are ultra-

morphisms over Set we have the corresponding ultramorphisms 61, 6) over Mod(P).

We obtain a pair of homomorphisms

5:Dy
Di (po) = D2(¥0) = Mo ———> [I Mg/W = Di (2) = Da(E)

62D.

Applying F' we have .

F(6,D;)
FM

F(5,D2)
F(T] Mz/W)

Since 29 € FM has support e € Mol we have

(2.2) F(6,D1)(a0) = F(62D2)(zo).

We show that [W, F](M;)(F(6:D1)(xo)) = [(zz,)]: Since F is an ultrafunctor we
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have that the diagram

FM, 1 u F(6Dy) Wp F(T M,;/W)
6D VA

(1 FM;/W)

commutes. So what we want to show is that 6,F.Dj(r0) = [(xj,)]. According to

the definition of 6; we need a lifting of FD,. Define D* : Gi > Mod*(P) such

that D*|g = D and D*(é) = (T1M3/W, [W, F](Mq)7"([(z.4)]))- It is clear that the

diagram

ea > Mod"(P —- Set*

aA
commutes, where F*(M,x) = (FM,x). We conclude that 6,FD,(xo) = [(24,)]-

Similarly we can show that 62/D2(zo) = [(xz)]. By the way we chose zy, and

xz, that [(z.z,)] # [(xz2)]. This is in contradiction with 2.2. Oo

Lemma 2.16. Let F : Mod(P) — Set be an ultrafunctor, (C,S) be a small closed

approximation of Mod*(P) and C,D be two (C,S)-subobjects of F. If for all (M,*)

in C with #M <x and ever x € FM we have (M,x) € C if and only if (M,x) € D,

then C =D,

Proof. Let (N,*) be an object of C. Since (C,S) is a closed approximation

we can find (M,*) in C with #M < « and M = N together with an ultrafilter

(I,U) with the following properties. There is an isomorphism h : M“ —. NY and

(1,U, 91), (1,U, 92) € S where g1, 92 : 1 + O0(C) are constant functions with values

(M, *) and (N, *) respectively. Consider the following diagram

FM (U, F\(M) (U, F](N) FN

F(5M)\, rh J F(SN)
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where 6 denotes the diagonal. Notice that since F is an ultrafunctor the above

diagram commutes.

Let y € FN. We show that (N,y) € C if and only if there exist J € YU and an

(M,zx;) €C for every j € J such that F(6N)(y) = FA((U, F](M)7*([(2;)])).

Assume first that (V,y) € C. Since C is a (C, S)-subobject we have [](N,y)/U €

C. Let z € F(MTM) such that FA(z) = F(5N)(y). Then h7! : (N%, F(6N)(y)) >

(M“, z) isin C. Therefore (M“,z) € C. Since C is a (C,S)-subobject we can find

a J €U and objects (M,z;) € C for every j € J such that [U, F](M)~"[(x;)] = z.

Now apply Fh. Conversely, assume that F(6N)(y) = FA((U, F](M)7*([(x5)a])) for

some J € U and (M,z;) € C for every j € J. Then (M”,[U, F](M)-([(x;)y])) €

C. Since h : ((M%,[U, F](M)~*([(x;)u]))) > (N, F(6N)(y)) is in C we have that

(N, F(6N)(y)) € C. This means that (N,y) €C.

We clearly have the same result for D. Therefore C = D. oO

Lemma 2.17. Let F : Mod(P) — Set be an ultrafunctor, Mo a model in Mod(P)

and to € FMo. Assume that e € Mol is a support for ro € FMo. Then there is a

diagram of the form

G-— ev, ~ 1

®

(2.3) F

in UC(Mod(P), Set) such that ro € IM ®Mo.

Proof. For every ordinal a give a small closed approximation (C,4,S,) such that

-Ifa< then C, C Cg and S, C Sz.

- Uy Ca = Mod"(P).

- Uy Sa is the set (in the second universe) of all the triples (J,U,g) with (J,U/) an

ultrafilter and g : 1 + Ob( Mod"*(P)).

It is not hard to see that such a sequence of small closed approximations exists.

Since (Co, So) is a small close approximation we can find a small set A and a family

of models {Me}veq such that

- #M, < « for every 2€ A.

- (Mp, *) is an object in Co for every £ € A.
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- For every model M in Mod(P) with #M < x there is an @ € A such that

M =~ Mz.

For every ordinal a let Cy be a partial cover of F relative to (Ca,Sa) with

(Mo, 20) € Cy. For every ordinal a and every € A define Xae = {x € FM,|(Me,z) €

C.}. Every a determines the family (Xe). Notice that since A is small and F' is

fixed there is a small set of such families. It follows that there is a family (Xz) such

that the set (in the second universe) = = {ala is an ordinal and (Xae) = (Xe)} is

unbounded. If a, 8 € = with a < @ then by lemma 2.16 we have that Cy =Ca Cg,

that is, Cy C Cg. Define C = UsezCa. By the remarks after the proof of lemma 2.12

C corresponds to a diagram of the form 2.3 above. Oo

By proposition 2.11 we have

Corollary 2.18. Let F : Mod(P) — Set be an ultrafunctor, Mo in Mod(P), zo €

FM, P in P anda € MoP such that a is a support for xo. There is a diagram of

the form

G»-—— evp

®

F

in UC(Mod(P), Set) such that a€ GM and ®Mo(a) = xo. Oo

In a result similar to 2.16 we show that an ultranatural transformation is deter-

mined by its values at models of size at most k = #P

Lemma 2.19. [f ®,¥: F = G: Mod(P) — Set are ultra-natural transformations

between ultrafunctors such that for every model M in Mod(P) of cardinality #M <

we have 9M = UM thend=W

Proof. Let N be a model. Choose a model M of cardinality at most «, an ul-

trafilter (1,0) and an isomorphism h : M4 + N“. Let y € FN. Since h is an

isomorphism there exists z € F(MTM“) such that Fh(z) = F6N(y). Let J € U and

z; € FM for every j € J such that [U, F](M)(z) = [(z;)s]. Since © is an ultranatural
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transformation the diagram

F(M“) (a, FM) (FM
o(M“) (6M)

Wild u
GM") ray (GM)

commutes. It follows that o(M“)(z) =U, G](M)~1[(@M(z;))]- Using the naturality

of ® applied to h we conclude that @(N“)(FSN(y)) = Gh((U, G\(
M)-"[(@M(2;))))-

Using the commutativity of

pn ESA. FN“)

oN a(N“)

GN G(N*)
GéN

we have G6N(®N(y)) = Gh((U, G\(M)~"[(@M(2;))))- The 
same reasoning shows

that GEN(WN(y)) = Gh((U, G(M)~" (YM (23))))- Since #M < « we have that

®M(x;) = YM(a;) for every j € J. The result follows from thi
s. Oo

Proposition 2.20. If P isa small pretopos, then every F in UC
(Mod(P), Set)

has a finite cover via ev: P — UC(Mod(P), Set).

Proof. Since P is small there is a small set of ultrafunctors of the form evp

with P in P. According to Lemma 9.19 an ultrafunctor evp > F' is determined

by its values on models of size at most k. From lemma 2.6 we know that evp :

P > UC(Mod(P), Set) is subobject full. It follow that there is a small set T

of diagrams of the form F+2-Gyseup such that for any diagram p=" G!eu
p

there is a diagram (F’ +— Groevp) € T and an isomorphism G — G’ such that the

diagram

p-2—G¢@—-evp

G

commutes.
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For every model M in Mod(P) and z € FM we know that there is a diagram of

the form (pe G>>evp) with x € Im®M. By what we said above we may assume

that (Fs=GSeup) ET.
Let P,(T) denote the set of finite subsets of TJ ordered by inclusion. Assume

that for every T € 7, T = {pf G; > evp,}"_, there are a model Mr and ry €
F Mr such that cr ¢ ULL, ®iMr. Let UW be an ultrafilter on P,(7) such that for

every T € T we have that 1(T) € U. Consider [U, F](Mr)~"[(rr)] € F(T] Mr/U).

We can find (Fase) € T such that [U, F](Mr)"'[(rr) € Im] Mr/U.
This means that there is J € U such that for every T € J, rr € IMOMrz. If

T eT (Fe" Ge sdupih AJ €U then we have that zr € Im®Mr-. On the other

hand, since an er € T we have zr ¢ ImM@®Mr. A contradiction. There
exists then T € P.(7) such that for every model M and every x € FM there is an

element (P<*-Gieseus) € T with cr € Im®M. T is then a finite cover of F' via
ev: P ~ UC(Mod(P), Set). O

We have shown that for a small pretopos P the functor

ev: P + UC(Mod(P), Set)

is conservative (Proposition 2.7), subobject full (Proposition 2.6) and that every F’

in UC(Mod(P), Set) has a finite cover via ev (Proposition 2.20). This is enough to

prove Makkai’s Theorem (Theorem 2.3).



Chapter 3

Continuous Families of Models

In this chapter we are going to consider categories of models of pretoposes as categories

indexed over Top, the category of topological spaces and continuous functions. Before

we go into the definitions we want to give some motivation for taking this approach.

Given a continuous function f : Y —~ X in Top we obtain a geometric morphism
r

Sh(X)== Sh(Y). Now, f* preserves finite limits and all colimits, this in particular
*

means that f* : Sh(X) > Sh(Y) is an elementary functor. For any pretopos P

composition with f* induces a functor Mods,x)(P) + Mods,y)(P) which we

also call f*. We want to relate this with the ultraproduct functors (see 1.4). Let

I be a set and consider it as a topological space with discrete topology, let 3/ be

its Stone-Cech compactification and 1 : J] — @I be the usual embbeding. @/ =

{U|U is an ultrafilter on J}, and a basis for the topology on {J is given by sets

of the form J* = {U € BI|J € U} for subsets J C J. We will show later that

€I, : Sh(I) — Sh(8I) is an elementary functor (see Proposition 3.18). We have an

equivalence of categories given by P : Set’ > Sh(I) where P(A;)(J) = [jes Aj and

P(fi)(J) = Myer f; : yer Ai @ Mes B; for every J C J and (f;) : (Ai) — (Bi) in

Set’. If U/ is an ultrafilter on J then we have a function jp we that sends the only
element of 1 to U.

Lemma 3.1. The composition set! si )—— ths, sh(pt)—2- Set is naturally iso-
morphic to the ultraproduct functor defined by U.

Proof. Denote by L : Sh(8I) — LH/GI the usual equivalence where LH/fI is
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the category of local homeomorphisms over 6]. If we start with a family (A;)je7 in

Set! we have that

L(EI.(P(Ai)ier)) = T[ lim €1.(P(Ai)ier)(W)
Fepsl Fey

using the fact that the sets of the form J* form a basis for the topology of 3/ we have

L(EL(P(Ai)ier)) = Usesr am €1.(P(Ai)ier)(J*)
eT,
Fes

= Lsegs fam (P(Aijier (EI (J*))
JEF

= [see pause P(A;)ier(J)

= LTregy Be Ties Ai

Therefore, the fiber over YU is lim [];¢y Ai . We proceed similarly with families of

morphisms. Oo eal
Assuming we know that €/, : Sh(1) — Sh(@J) is elementary (see 3.18 below)

we have that composition with €/, induces a functor Mods; 1)(P) — Modsig1(P)

(called €/, as well) for any pretopos P. We have an equivalence F : Mod(P)' =

Modsn1)(P) given by F(M;)(P) = (M;P) and F(7;)(P) = (7;P) for every P in P

and every (1;) : (M;) > (N;) in Mod(P).

Corollary 3.2. The composition

gl. Uu*F

is naturally isomorphic to the ultraproduct functor defined by U. Oo

We obtain then the ultraproduct functors from continuous functions in Top.

3.1 Indexed Category Theory

Basic Definitions

We review indexed category theory, as in [19]; in [3] the approach is via fibrations.

To start with, we need a category T with finite limits, that we call the base category.
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We further assume that T is locally small.

Definition 3.1. A T-indexed category A consists of the following data

1. A category A* for every object X in T.

2. A functor f* : AX — A” for every arrow Y sy Xie,

3. A natural isomorphism

X Xx

A -— oe
Lae

for every X in T.

4. A natural isomorphism

Ar : Ar
(So Oe

AZ

for every Z + Y 4 X in T.

Subject to the following coherence axioms

Al. The diagrams

(f oly)* —=+(ly)*of* and (lx o f\*—=+ f* o(1y)*

1 es 1 a

f* 1 lay o f* f 1 f* olyx

commute for every Y !,XinT.

A2. The diagram

(fogoh)* = h* o(fog)
~ ~

(goh)* 0 f* + h* og" o f*

commutes for every W alts Futs YL toe

Definition 3.2. Given T-indexed categories A and 8, a T-indexed functor F : A —

B consists of the following data:

1. A functor F* : AX — B* for every X in T.
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2. A natural isomorphism

Ax a AY

ye | ~/| FY
x ¥

B ia B

for every Y why X in T.

Subject to the following coherence axioms:

Bl. The diagram

FX o(1x)* FX olyx

| >FxJ 1

(1x)*o F* ex oF

commutes for every X in T.

B2. The diagram

F2 o(fog)*—+ F%og*o f* —+g*o FY o f*

(fog) o F* gio fto Fx

commutes for every Z + Y 1. X in T.

Composition of T-indexed functors is defined in the obvious way.

Definition 3.3. Given T-indexed functors F,G : A — B, a T-indexed natural trans-

formation t : F — G consists of a natural transformation r* : F* — G* for every

X in T, such that the diagram

Y gx

FY o fr 2. Go pf

f* fe) Fx pr f* oO Gx

commutes for every Y /,XinT.

T-indexed natural transformations also compose in the obvious way.
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Examples

We will be interested in the case where T is the category Top of topological spaces.

As an example we have the Top-indexed category SET. Given a topological space

we define SET* to be the category Sh(X) of sheaves over X. If f: Y — X isa

continuous function then f* : SET* — SET” is the usual f* : Sh(X) 3 Sh(Y).

Here is another example. If A is a T-indexed category and, C is a small (ordinary)

category then we define the T-indexed category [C, A] as follows; [C,A]* = (A*)°

for X in T. If Y 4 X is an arrow of T, then [* : [C, A]* = [C, A]® is such that

(Cc 44 AX) 6 (C4 AX GY)

If A is a T-indexed category, we define the T-indexed category A°?, such that

(Av?)X = (A*)°? and for Y _!, X in T, the transition functor is (f*)°?. If B is

another T-indexed category, we can define the T-indexed category A x B such that

(A x B)* = A*® x B* and the functor corresponding to f is f* x f* : AX x BX >

AY = BY.

T itself can be regarded as a T-indexed category T in the following way; Define

T* =T/X for X in T and, for Y -, X define f* to be the pullback functor along

f.

Small Homs

Questions of size concerning a T-indexed category should be considered with respect

to the base category. Given A and A’ in A*, we have the functor

Aaa = (T/X)°? —_ SET,

such that for every

Z Bt ny

Pl aigh dt
X

in T/X, we have Ha.ai(f) = A’ (f*A, f*A’), and

Haar(h): AX (f*A, f* A!) = A? (g"A, 9°’)

is such that

~

(ftA 4s ft A!) (g"A = (fh)tA Ss aft 2S At ft’ Ss (fh)tA’ = g" A’).
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Definition 3.4. A T-indexed category A is said to have small homs if for every X

in T, A, A’ in A* there exists an object hom* (A, A’) : Hom*(A, A’) > X in T/X

and a natural isomorphism

T/X(_,hom* (A, A’)) — Haar.

We say that A has small homs at 1 if the above condition is satisfied for X = 1

Whenever we have such an isomorphism we represent it by a horizontal line as

follows

fA fra’ in AY

f — hom* (A, A’) in T/X.

Suppose that A has small homs. A morphism (06,0’) : (A, A’) — (B, 8B’) in

(A*)? x AX induces a natural transformation Hy» : H4,4’ > Hp,p in the obvi-

ous way. This corresponds to a natural transformation

T/X(_,hom* (A, A')) = T/X(_ , hom*(B, B’)).

By Yoneda, this last transformation is represented by a unique morphism in T/X

that we denote by hom*(b,b') : hom* (A, A’) > hom*(B, B’). If we have Z + Y

and Y + X in T, then

g — f*hom* (A, A’) in T/Y

fg — hom* (A, A’) in T/X

(fg)"A = (fg)"A'__ in A?
Gf*Aw Gg fA’ in AZ

g > hom’ (f*A, f*A’) in T/Y.

This means that hom’ (f*A, f*A’) ~ f*hom*(A, A’) in T/Y. Therefore, if we define

hom(.,-): A??x.A — T such that for every X in T, hom(_, -)*(A, A’) = hom* (A, A’)

and hom(_,-)*(b, b') = hom* (b, b’) we obtain

Lemma 3.3. If the T-indezed category A has small homs then hom(-_,-): A? xA—

T is a T-indezed functor. 0
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3.1.1 Stability

Definition 3.5. We say that a T-indexed category A has T-stable colimits if for

every X in T, A* has colimits and for every f : Y ~ X the functor f* : AX — AY

preserves colimits.

Similarly we define the concepts of T-stable coproducts, T-stable finite limits

etc. This concept of T-stability should not be confused with the somewhat related

concept of stability under pullbacks. To avoid confusion we will use the word universal

to mean stable under pullback in this section.

A related concept is

Definition 3.6. Given a T-indexed category A, an object X in T and a monomor-

phism m : Ag>>A in A*, we say that m is T-stable if for every Y +, xX in T we

have that f*m is a monomorphism in AY. We say that A has T-stable monomor-

phisms if every monomorphism in A* is T-stable for every X in T. We say that a

subobject m : Ajp++A in A%* is T-stable if m is a T-stable monomorphism.

3.1.2 Well Powered Categories

Given a T-indexed category A and A in A%*, define the functor

Ssub((_)*A) :(T/X)? — SET

such that for every

Z

_ WA
in T/X, Ssub((_)*A)(f) = Ssub(f*A) is the set of T-stable subobjects of f*A, and

Ssub((_)*A)(h) : Ssub(g*A) > Ssub(f*A) is (B-> f*A) (h*B-sh* fA => g*A),

for every T-stable subobject B>—> f* A.

Definition 3.7. A T-indexed category A is said to be well powered if for every X in

T, Ain AX, there exists an object sub*(A) : Sub*(A) X in T/X, and a natural

isomorphism J'/X(-_, sub*(A)) + Ssub((_)A). We say that A is well powered at 1 if

the above condition is satisfied for X = 1.



If the T-indexed category A has T-stable pullbacks and is well powered, then for

every a: A — A’ in A* we can define the natural transformation Ssub((_)*a) :

Ssub((.)*A’) > S'sub((_)*A) such that for any Y > X in T/X we have that

Ssub( f*a)(B > f*A’) is the pullback

Ssub( f*a)(B-> f*A’)

fra fra.
fra

This induces a natural transformation T/X(-_,sub*(A’)) + T/X(_, sub*(A)). By

Yoneda this last natural transformation is represented by a morphism in T'/X that

we denote by sub*(a) : sub*(A’) > sub* (A).

Define sub(_) : A’? — T such that sub(_)*(A) = sub*(A), and sub(_)*(a) =

sub* (a), for every X € T and A —+ A’ in A*. As for hom we have

Lemma 3.4. If the T-indexred category A has T-stable pullbacks and is well powered

then sub(_): A°?? + T is a T-indered functor. Oo

Notice that if A has T-stable pullbacks then every monomorphism is T-stable.

3.1.3 Adjoint Functors

Definition 3.8. If F : A — B is a T-indexed functor, we say that F has a right

adjoint if there exists a T-indexed functor R: B > A and T-indexed natural trans-

formations 7: lp + RF and «: FR = 1p such that the diagrams

F
FOL FRF and RFR-ES

Te A
F R

R

commute.
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3.1.4 Internal Functors

Let D be the T-category

To do =

Ds a dD, id Do,
TM 61

that is, D is a category object in T.

Definition 3.9. Let A be a T-indexed category, ane D a T-category as above. An

‘nternal functor from D to A is a pair (A,d54 — 6;A) with A in Ao and & a

morphism in A?!, such that the diagrams

1d*dgA ‘and T5O9A ob n76* A= TIGA

be: AE: ~ me
wd*d5A nf oA ee d;A—x— TOT A

commute. Given another internal functor (B,é5B —., §*B) from D to A, an internal

natural transformation a : (A,65;4 —> 6A) 7 (B,65B —~, 6B) is a morphism

a:A— Bin A” such that the diagram

ssa’. 6A

ssa | | sa

6 “B

commutes.

Internal natural transformations compose in the obvious way, and we obtain the

category AP whose objects are internal functors from D to A and whose morphisms

are internal natural transformations. Furthermore, we can T-index A as follows.

Given an object X in T, form the T-category D x X and define (A?)* = AP**. If

f :X —Y is a morphism in T, then fr: APxX — AP*Y is such that (C,65C -,

5C) + ((Do x f)*C, (Di x f)*H).
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If H :D-— C is the T-functor

To 60

Dy» Dy
Ty Oy

A Ay, Ho

To do

0, as
4 6}

between T-categories, we define H* : AC — AP such that (A, 654 a 675A)

(Hx A, 62H A > H6¢A ED He5*A) => 62 HA).
If F : A > B is a T-indexed functor between T-indexed categories, we can induce

the functor FP : AP = B> such that (A,63A + 653A) 4 (F2°A,55F2°A =>

F165 ao F.§*A + 6:FP0A). It is not hard to see that when H :D > Cas
above we have the following commutative diagram

Ac —i_- yp

re| pe
Bo —z— BP

Small Limits

We can define a T-indexed functor Ap : A — A” such that for every X in T

and a: A > A’ in AX, AX(A) = (1A, (50 x X)*2%A > (6; x X)*x¥-A), and

Ax (a) = mya, where mx : Do xX X — X is the projection.

Definition 3.10. We say that the T-indexed category A has D-limits if the T-

indexed functor Ap has right adjoint lamp.

D-colimits are defined in the same fashion, requiring a left adjoint instead of a

right adjoint.
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3.2 Functor Categories

We consider now categories of the form T-ind(A, B) of T-indexed functors form A to

: B. As in ordinary category theory T-ind(A, B) inherits its properties from B.

Proposition 3.5. Let A and B be T-indezed categories. If B has T-stable limits

then the category T-ind(A,B) has limits and if F: A C is a T-indezed functor

then the functor T-ind(F,B) : T-ind(C,B) > T-ind(A, B) preserves limits.

) Proof. Let . : I > T-ind(A,B) be a diagram. For every X in T we obtain a

diagram [* : I > CAT(AX*, B*) such that [XJ = (T1)* and [*7 = ([1)* for every

i: [3 /'in I. Define O* = limT* I. Since B* has limits we have that for every A

in AX, O*(A) = lim (PI*(A))- Given f : Y X we obtain a natural isomorphism

~~

Vf I I

MN

f*TI* and the

second isomorphism by the fact that f* preserves limits. It is not hard to see that
where the first arrow is induced by the isomorphisms TI” f*

these isomorphisms satisfy coherence, making @:A-— B a T-indexed functor. For

every J in I we define rk : Q* = TI* as the projection. It is easy to see that

this definition makes x; a T-indexed functor and the family (O ae TI) acone. The

universal property is clear. Oo

Remark 3.1. Notice that the above proposition remains true if we replace limits by

finite limits or coproducts etc, provided they are T-stable in B. Notice furthermore

that the limits (or colimits, etc) are calculated doubly pointwise, that is they are cal-

culated as the limit in T’-ind(A* , B*) and they are pointwise at every T-ind(A* , B*).

Lemma 3.6. [f B has T-stable strict initial object then T-ind(A, B) has strict initial

object. oO

Proposition 3.7. If B has T-stable finite limits, a T-stable initial object, T-stable

coproducts and for each X in T the coproducts are disjoint and universal, then

T-ind(A,B) has coproducts and they are disjoint and universal.
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Proof. By remark 3.1, T-ind(A,B) has coproducts and they are calculated point-

wise at each X in T. Since finite limits are pointwise too at every X and so is the

initial object the result follows. oO

Proposition 3.8. [fB has T-stable finite limits and T-stable quotients of equivalence

relations and for every X in T these quotients are universal then T-ind(A,B) has

quotients of equivalence relations and they are universal.

a

Proof. It is easy to see that an equivalence relation F ——> G in T-ind(A, B) pro-
z

ox

duces an equivalence relation F* —~* G*. Then proceed as before. |
q 7 Pp

T

Proposition 3.9. [f B has T-stable finite limits, T-stable sups of subobjects and for

every X in T they are universal then T-ind(A,B) has sups of subobjects and they are

universal. oO

Assume now that T has coproducts. Let A be a T-indexed category and {Xa}.

a family of objects in T’. Consider its coproduct ee, Ll. Xa)a. We obtain the

functor (2%) : AL. X= — [], A**. We say that A distributes coproducts if for every
Qa

family {X.}q of objects in T the functor (2%) : All. *« — J], A* is an equivalence

of categories with pseudo-inverse (i7)~. Notice that if we have a T-indexed functor

F.:A-— B and an arrow f : Y — X then the isomorphisms PXojs —. jx FU, Xa

induces an isomorphism

FU. Xe | mn | Tle PXa

Bl. Xa iz) Tl. BXxa

and if both A and B distribute coproducts we obtain then a natural isomorphism

All. *@ (3) Tle Axa

Fu. Xe ~ | Tle FXe
sacsa Xa

a He®
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Definition 3.11. Let T-IND be the full, 2 full subcategory of T-ind whose objects

are T-indexed categories that distribute coproducts.

Remark 3.2. Since for any A and B in T-IND we have T-IND(A, 8B) = T-ind(A, B) it

is clear that the propositions above remain true when we are dealing with T-IND.

The category SET is clearly an object of Top-IND.

3.3 Continuous Families of Models

Let P be a pretopos, we define the Top-indexed category MOD(P) of models over

P as follows: Given a topological space X, let MOD(P)* = Mods;x)(P) and if

f :Y — X define f* : Modsyx)(P) > Modsyy)(P) as composition with f* :

Sh(X) > SA(Y)

(Pp sax) 6 (pM. scx) say).

Since f* : Sh(X) —> Sh(Y) has a right adjoint and it is left exact it is elementary,

we have then that the composition with M is indeed a model. It is not hard to see

that MOD(P) is in Top-IND.

The Top-indexed category SET is equivalent to MOD(P) for P = (Set") 4.

Indeed, we know from Theorem 1.3 that we have an equivalence

Topos/Set(Sh(X),Sh(P, J)) ~ MOD(P)*

where J is the precanonical topology on P, and (see [8] 6.33)

Topos/Set(Sh(X), Set*) ~ Sh(X).

We have (see [11] 1.8)

Proposition 3.10. The Top-indezed category SET has Top-stable finite limits, Top-

stable colimits, Top-stable quotients of equivalence relations and they are universal at

every X in Top, Top-stable sups of subobjects and they are universal at every X in

Top. O



Corollary 3.11. For every Top-indezed category A the category Top-ind(A,SET )

1s an co-pretopos (in the sense of [18], that is, it is left exact, has universal sups of

small sets of subobjects, universal images, universal quotients of equivalence relations

and universal disjoint coproducts).

Proof. The result follows from Propositions 3.5, 3.7, 3.8 and Lemma 3.6. Oo

It is shown in [11] that the Top-indexed category SET is well powered, cowell

powered and has small homs. We have

Proposition 3.12. The Top-indezed category MOD(P) has small homs at 1.

Proof. Let M € Mod(P), and N € Mods;;x)(P). Consider the diagram I :

El(M) — Top/X such that ['(a € MP) = NP where we consider NP as a local

homeomorphism over X, and ['((a € MP) —> (b € MP’)) = (NP ble NP".

Consider lim T(a € MP) = DE in Top/X. Then for every f : X —> Y we have
(M)

h: f= > ie in Top/X
El(M)

( (haem) fee NP). cup), in Top/X

where for every p: P —+ P’ and any a € MP the diagram

h(aeMP)
f NP

hawiaeme\. JK p
NP!

((hiwem) “f— NP)

commutes. Now,

aude in Top/X

( (acme) :1— FNP) eum), an Top/Y

where for every p: P —> P’ and any a € MP the diagram

Rig
py EVP). pnp

K(Mp(a)eMP') Js p
f°NP!
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commutes. Then

((keem :1l— PINE) yun)'o in Top/Y

Y*M— f*N in MOD(P)*

prX*M— fn in MOD(P)*

In particular, for M, N in Mod(P) define hom'(M, N) = lim NP in Top. oO
BM)

Notice that this gives a topology to the sets Mod(P)(M, N) for M, N in Mod(P).

Indeed, for the topological space 1 we have the corresponding isomorphism

Top(1,hom'(M, N)) > Mod(P)(M,N).

Notice that hom!(M,N) is a subspace of [Ijewpp) NP. It is not hard to see

that the topology for Mod(P)(M,N) has as subbasis sets of the form Upas{h :

M— N|hP(a) = 6} with P in P,a ¢ MP and be NP.

Further analysis of smallness conditions for Top-indexed categories of models will

be done elsewhere.

3.4 Los Categories

So far we have not dealt with arrows of the form f, that allowed us to obtain the

ultraproduct functors at the beginning of this chapter. We now take care of this.

Definition 3.12. Let f : Y —~ X bea morphism in Top. We say that f is ultrafinite

if f.: Sh(Y) + Sh(X) preserves finite coproducts and epimorphisms.

Notice that f : ¥Y > X ultrafinite means in particular that f, is an elementary

functor. Therefore, for every pretopos P, composition with f, : Sh(Y) — Sh(X)

induces a functor MOD(P)* > MOD(P)*, also denoted by f., that is right adjoint

to f«: MOD(P)* += MOD(P)".

As we mentioned before, given a discrete topological space J the usual embbeding

I — BI into its Stone-Cech compactification is ultrafinite. We show this fact and

give some more examples of ultrafinite functions below (see 3.5).



Definition 3.13. Given A in Top-IND we say that A is a Los category if for every

ultrafinite morphism f : Y — X the functor f* : AX — A® has a right adjoint

jh =A

Given A and B in Top-IND we say that a Top-indexed functor F: A- Bisa

Los functor if for every ultrafinite f : Y — X in Top we have that the composition

pr p PT Say pm px p Sp py pep LES py

is an isomorphism where 7 is the unit of f* 4 f. : BY — B*, e is the counit of

f* 4 fe : AY — A* and the middle isomorphism is induced by f*F* =. FY f..

Given a pretopos P and an object P in P is is easy to see that the evaluation

Top-indexed functor evp : MOD(P) — SET is a Los functor.

Definition 3.14. Let fas be the 2-category whose objects are Los categories, its

1-cells Los functors and its 2-cells Top-indexed natural transformations.

Thus Losis a locally full subcategory of Top-IND.

Proposition 3.13. /f B is a Los category that has

-Top-stable finite limits.

-Top-stable initial object strict at every X in Top.

-Top-stable finite coproducts that are disjoint and universal at every X.

-Top-stable quotients of equivalence relations universal at every X in Top.

Then for every Los category A the category Los(A,B) is a pretopos. Furthermore,

the corresponding limits and colimits are calculated as in Top-IND(A, B).

Proof. By Propositions 3.5, 3.7, 3.8 and Lemma 3.6 we have that Top-IND(A, B) is

a pretopos. All we have to show is that finite limits (coproducts, etc) of Los functors

in Top-IND(A, B) produce Los functors. Clearly the terminal functor 1: A — B is

Los. Let F,G be functors in £os(A,B) and f : Y > X ultrafinite. Consider the
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following diagram

(F x G)* f. FX f, x GX f.

n(F x G)* fa nF f. x nG* fi

f.f"(F x G)* f- “FX fx faf'G* fia

| —_
fF x G)Y f* fe faFY ft fa x f[GTM f* fa

f.(F x G)¥e faFYe x f.GYe

fil F ey = faFY x f.GY

where the top square commutes because f, f~ preserves finite products and 77 is nat-

ural, the one in the middle commutes by coherence and the bottom one commutes

because (F x G)” is pointwise. Since F and G are Los the vertical composition on

the right is an isomorphism. Therefore the vertical composition on the left is an iso-

morphism. A very similar argument shows that the pullback of Los functors is also

Los. Therefore 2 09(.A, B) has finite limits.

The initial functor 0: A — B is clearly Los. Showing that £os{A, B) has finite

sums is a similar argument as before using the fact that f. preserves finite sums.

Finally we show that 2os(A,B) has quotients of equivalence relations. Suppose that

F=Gis an equivalence relation in £o9(A,B). It is easy to see that (0,7) is then

an enledtence relation in Top-IND. Consider G —. H its quotient. We have to show
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that H is Los. Consider the following diagram

a f, VX f,

F* f, Xf O fe H* f,

nF* fe nG* f. nH* f.

faf*or fe
Saf PO fe Sep L OS f.ftv*f fuf*H* f

f shes ees i wp* * far ff fs f te fav’ fr fe Se f te

fF e fe GY é! fH é!

feo j

f.FY =a f.G¥ FF ‘ial

It is not hard to prove that the diagram commutes. Since f. preserves epimorphisms

we have that f,v’ is an epi. Since

Ys

f.FY fio! f.GY

GY —> f, H*

is a pullback we have that the last row in the diagram is a coequalizer. Since the first

row is also a coequalizer and the first two vertical compositions are isomorphisms we

conclude that the third vertical composition is also an isomorphism. So we have that

H isin Los(A,B). O

It is easy to see that if B satisfies the conditions of Proposition 3.13 and F: A>C

is a Los functor between Los categories then Los(F,B): Los(C,B) — Los(A,B) is

an elementary functor. We therefore obtain a functor Los” — PRETOP.

3.5 Characterization of Ultrafinite Functions

We now turn our attention to ultrafinite functions in Top.
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In what follows we will use the well known equivalent descriptions of SET* as

the usual Sh(X) and as the category LH/X of local homeomorphisms over X, for

a topological space X. We use the usual equivalences T : LH/X —> SET* and

L: Sh(Y) —> LH/Y (see [2] for example).

Lemma 3.14. Let f : X > Y be a continuous function then f. : Sh(X) > Sh(Y)

preserves the initial object if and only if f(X) is dense in Y.

Proof. Suppose first that f, preserves initial object. Let V be a nonempty open set

of Y, and let 0 represent the initial sheaf, then f.(0)(V) =. That is, O(f~'V) = 9.

Therefore, f-!V can not be the empty set, and then VN f(X) #0

In the other direction, suppose f is dense. Let V be open in Y, since f(X) is

dense in Y, we have that f-'(V) # 0. Therefore O(f-*(U)) = 9. So f.(0) = 0.

O

For the rest of the section rather that working with f. : Sh(X) — Sh(Y), we will

be working with LH/X + Sh(X) 2 Sh(Y) + LH/Y. If we have

E i E!

x

in LH/X, then we have that the map

lim T(B,p)(f-(V)) PEE) TT tim PE" (IV)
Vay yeY Vay

is such that [s € T(E, p)(f-1(V))]y OH [Ros E T(E. py )(f "(Vy

Lemma 3.15. Let f : X — Y be a continuous function with dense image. Then

fe: Sh(X) — SA(Y) preserves finite coproducts if and only if for every open V CY

and every y € V, whenever f~'(V) is the union of two disjoint open sets of X, there

exists W CY open with y € W such that f~'(W) is contained in one of them.
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Proof. Suppose f, preserves finite coproducts, therefore Lf. preserves finite co-

products. Consider the following coproduct in LH/X

FP eects BE eee Y

(idx, idx)

idx idx

x

Since Lf.T preserves finite coproducts, we have that the induced continuous function

LfU(X,idx ILS. X, 1dx ) ea LFT(XLLX, (idx, idx))

is a homeomorphism. Take V C Y an open set, y € V, and suppose that f7!(V) =

AU B with A and B open and disjoint. Define s : f-'(V) —+ XI] X such that

4 is the inclusion of A into the first factor, and s|g is the inclusion of B into the

second factor. Then s is continuous and [s], € Lf. (X [| X, (¢dx,idx)). Therefore

there exists an open set W of Y, and a continuous function t : f~'(W) —> X such

Ss

that one of the following diagrams commute

PA: LW) x

Pk | s
FAV ATE VY) ee XX

In any case, we have f-'(W) C A or f-1(W) CB.

In the other direction, consider the coproduct

p—2. Fi] P«2 LP

(p, p’)
P

/

P

x

in the category LH/X. Then we induce the unique morphism y that makes the



Lf. (E,p)— Lf T(E, p)ULFT(E',p') — LATE’. p’)

Lf.P(E] E', (p, p’))

commute. We have to show that y is a homeomorphism. First we show that ¢ is

monomorphic. Suppose ¢([f~!(V) —> E],) = y([f-!(W) —> E'].). Then it is clear

that y = z and that

[f1(V) + B 2 ELLE’y = [f-(W) 4 B! “25 ELE,

Therefore, there exists U C Y open such that y€ U CVOW, andr: f-1(U) —

E\[ E’ such that

AV — UC)
s| |" t

lE lr

commutes. Suppose z € f~'(U). Then r(x) € E and r(x) € E’, a contradiction.

Therefore f~'(U) = @. But U is open and nonempty, and f(X) is dense in Y,

therefore f~'(U) is nonempty, another contradiction. Therefore we conclude that it

is not possible that y([f-'(V) —> E]y) = y([f-1(W) > E'.).

Suppose now that y([f-?(V) —> E]y) = ¢([f-1(W) —> E].). Then we proceed

as before, so y = z and we can find U open in Y with y € U and U CV OW and

r:f—1\(U) — E][[E’ such that

PN es PO) ee)

s| |r

E— EVE’ E
te te



f-\(U) — FV)

| i
[\(W)——E

therefore [f-1(V) —> E], = [f71(W) —> E],, and ¢ is mono.

Now, take [f-1(V) > ELE’, € L/P(EW E’, (p,p’)), then f-'(V) = s71(E)U

s~1(E’) with s~!(£) and s~'(E’) open and disjoint. Therefore there is a W C Y open

such that y € W, and f-!(W) C s“!(E) or f-'(W) C s1(E’). If f-'(W) C s7*(E).

Then y([f-1(W) st Ely) = [s]y. The other case is similar. Finally, y is open
because it is a local homeomorphism. Oo

If we consider

in LH/X as before, then Lf,['(h) is an epimorphism iff for every y € Y, every V

E
E!

open in Y with y € V and any s: f~'(V) —> E’ such that p’os equals the inclusion

of f-1(V) in X, then there exist W open in Y with y € W andt: f-'(W) — E

such that

commutes, where the left vertical arrow is the inclusion.

Lemma 3.16. Jf f : X — Y is a continuous function, then f, : Sh(X) > Sh(Y)

preserves epimorphisms if and only if for every V C Y open, y € V and every open

cover {Ua}aca of f-'(V), there exist an open W of Y withy € W CV, and a disjoint

open cover {Wahaca of f-'(W) such that for every a we have that W, C Uy
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Proof. Consider a commutative diagram

pf"

x

with p and p’ local homeomorphisms and A onto. Take V open in Y and y € V.

Suppose that s: f-!(V) —> E’ is such that p’os equals the inclusion 7 : f~'(V) —>

X. Since s is a local homeomorphism, it is open. Therefore s(f~'(V)) is open in

E', and s : f-!(V) —> s(f7'(V)) is a homeomorphism with inverse p’. Since Ah

is continuous we have that h~'(s(f7'(V))) is open in E. So we have the following

commutative diagram

/

h-1(s(f-1(V))) 2 s(f-4(V)) f-1(V)

where the composition at the top is clearly onto. It is clear that it is enough to find

W CV with y € W and t: f-'(W) — h71(s(f7'(V))) such that

f-\(W) —& h-'(s(f-1(V)))

aN poh
pr

commutes. So, we may suppose that we have a local homeomorphism q : E” —>

' f-1(V) that is onto and we want to find W CY with y € W andt: f-'(W) —> E”

such that

(V)

f-\(W) —*— B"
XA

fuv)

commutes.
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For every x € f~!(V) choose U, C f~1(V) open, UL Cc E” open such that x € Uz

‘and q : Ul! —>+ U, is a homeomorphism. Then, {Uz}zes-1(v) is an open cover of

f71(V). Therefore there exist W C V open with y € W and a disjoint open cover

{We}ees-v) of f-'(W) such that W, C Uz for every x € f(V). Define t, =

(qlu:)7!|w, : We —> E”. Since {We}zes-1(v) are disjoint and clopen in f\(W) it is

clear that we can put them together to obtain the continuous function ¢ : f~'(W) —

E" such that tlw, = tz. t has the required property. Oo

We put Lemmas 3.14, 3.15 and and 3.16 together in the following proposition.

Proposition 3.17. A continuous function f : X — Y is ultrafinite if and only if f

satisfies the following conditions:

(1) f(X) is dense in Y.

(2) For every open V of Y and anyy € V, if f(V) = AUB with A and B

open and disjoint, then there exists an open W C V with y € W such that

fo(W) CA or f(W) CB.

(3) For every open V of Y, any y € V and any open cover {Ua}aea of Pt},

there exists an openW CV with y € W and a disjoint open cover {Wa}aea of

f-1(W) such that for every a € A we have that W, C Ua.

O

Proposition 3.18. Given a discrete topological space I, the usual embedding €/ :

I = BI into its Stone-Cech compactification is ultrafinite.

Proof. Since €I is dense we have by Lemma 3.14 that €/, : Sh(I) — Sh(SJ)

preserves the initial object. Take a basic open J* and an element U € J* and assume

that €1-1(J*) = J, U Jz with Jy N Jz = O. Since €I-1(J*) = J we have J; U Jz EU.

Since Y/ is an ultrafilter that means that J; € YU or Jz EU. That isu € JT or U € JZ

and €/-1(Jf) C J, for k = 1 or for k = 2. By Lemma 3.15 we have that €/, preserves

finite coproducts. Using Zorn’s lemma it can be shown that for any family {J.} of

subsets of J we can find a disjoint family {J.} such that U, Ja = U, Ja and for every

a, Jay C Iy. So given a basic open J*, a point UY € J* and an open covering {Ja}

of £J~! we simply replace the family {/,} with a disjoint family {J,} with the same
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union such that Jy C I, for all a. By Lemma 3.16 we have that /, preserves epis.

O

We need not take all of @/. If we take a non principal ultrafilter U on / and

consider the topological space €/(J) U {UW} with the topology it inherits from J we

have that the resulting embbeding J > €/(/) U {U4} is ultrafinite. We normally

identify €1() with I, denote the element corresponding to U by ay and denote the

resulting space by ly.

Another example of an ultrafinite function is the following. Let D be a directed

category. Consider the topological space Xp whose elements are the objects of D

and give Xp the Alexandroff topology, that is the sets of the form t(d) = {d’| there

exists an arrow d — d'} form a basis for the topology. Consider the topological space

Xp U {p} where p ¢ Xp and with basis {{(d) U {p}}aep- Notice that we need D

directed for the given family to form a basis. We have an obvious continuous function

Xp — Xp U {p}. It is not hard to see that this function is ultrafinite.



Chapter 4

Algebras

4.1 2-Monads

We will consider several monads. In this section we give the definitions we will be

using later to fix the notation. We follow the notation of [5].

Given a 2-category A, a strict 2-monad on A is a 2-endofunctor T: A > A

together with 2-natural transformations 7 : 1 — T and p : TT —T such that the

usual diagrams

TnA TyuA
ra”. pra TA vA TTTA—=TA

Ita HA /\7a uLTA pA

TA TTA A" TA

commute on the nose. Given a strict 2-monad T = (T,n, ) a strict algebra is a pair

(A,®) where A is an object of A and ®: TA — Ais a 1-cell of A such that the

ususal diagrams

A

A—“—TA rrat4. 7A

la © To ®

A TA—g— A

89



two cell

ia A

TH oe H

[By B

satisfying the coherence axioms

tra pre 6 = ra—*{rre

uA | | uB T® Ty TW
TA —TH TB TA —TH TB

A i B A B

and

Aa—#-Bp = idy

TA—FA TB

of ay
A i B.

When y is an identity we say that the morphism (H, ¢) is strict.

We consider the 2-category T-ALG whose objects are strict algebras (A, ®), whose

l-cells are morphisms of algebras (H,y) : (A,®) — (B,W) and whose 2-cells Tr :



TK

TA {rps B = TA—*. rB

TH| BAN °| KY
a ATtho“a

We have the 2-subcategory T-ALG, of T-ALG where we restrict the morphisms

to strict morphisms. Thus the inclusion 2-functor is not full but it is locally full and

faithful.

4.2 Functorial Weak (Co)Limits

In this section we review some of the folklore of weak limits.

Let A be a category. For every object A in A we have the usual forgetful functor

Us: A/A 7A.

Definition 4.1. A functorial weak initial object in A is a pair (Z,F') with Z an

object of A and F: A > Z/A a functor such that the diagram

Ae GA

1 aa VA,

A

commutes. We say that A has a functorial weak initial object if such a pair (Z, F)

exists.

Functorial weak terminal object is defined dually.

If (Z, F) is a functorial weak initial object in A then clearly Z is a weak initial

object in A. Furthermore, for every arrow a: A — A’ the diagram

poh 4

rN
Ar



Z FZ
Z

FA\. /FA
A(4.1)

commutes.

Lemma 4.1. [f (Z,F) is a functorial weak initial object in A then FZ: Z — Z is

an idempotent.

Proof. For A = Z in 4.1 we obtain FZ0 FZ = FZ. Oo

Proposition 4.2. [f A has a functorial weak initial object (Z, F) and split idempo-

tents then A has an initial object.

Proof. From Lemma 4.1 F'Z is an idempotent. Consider a splitting

y— 4g
Sen

sg

Since

FZ
ZZ

rN fm

commutes, we have mo FS = FZ = moe. Since m is mono, F'S = e. Given A

FA5 mm 5in A we have the arrow S—+ Z ——+ A, Suppose now that we have another arrow

g:S — A. Consider the diagram

Zz
FZ

Z a FA
FS

es a
Both triangles on the left commute and the exterior triangle also commutes, therefore

FAomoe=goe. Since e is epi we have FAom = g. This shows S is initial. Oo



Let [: I 4 A bea diagram. Define the category Cocone(I) of cocones over I.

That is, the objects of Cocone(I) are cocones (rr ZL. a), and a morphism

a. (rye \i-> (rr SL. 4"),

is an arrow a: A — A’ such that for every / in J the diagram

|

fi. S Si
we

commutes. There is an obvious forgetful functor Cocone(l) — A and a weak colimit

cocone for [ in A is clearly a weak initial object in the category Cocone(T) and

vice versa.

Definition 4.2. A functorial weak colimit for [T in A is a functorial weak initial

object in the category Cocone(T).

Functorial weak limits are defined dually.

A functorial weak colimit for [ in A clearly gives a weak colimit cocone for [.

Lemma 4.3. [f the category A has split idempotents then the category Cocone(T)

has split idempotents. oO

Proposition 4.4. [fa category A has split idempotents and a functorial weak colimit

for a diagram: I 4A thenT has a colimit in A.

Proof. By Lemma 4.3, Cocone(I) has split idempotents and we are suppos-

ing that Cocone(I) has a functorial weak initial object. Then by Proposition 4.2,

Cocone(I) has an initial object. This initial object is a colimit cocone for T in A.

O
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4.3 Pseudo-retractions

H :
Suppose now we have functors A—> B and B—+A and a natural transformation

A Hp

IR
A

Proposition 4.5. In the above situation, if B has a functorial weak initial object

(4.2)

then A has a functorial weak initial object.

Proof. Assume (Z, F’) is a functorial weak initial object for B. Given a: A > A’

in A we have the commutative diagram

Z aA. HA

PHAN. / Ho
HA'

in B. Applying R and using the naturality of 6 we obtain the commutative diagram

gf OOK EES),

neon. -

Therefore (RZ, 6(_) o R(F H(-))) is a functorial weak initial object in A. Oo

Remark 4.1. Notice that for the dual, that is for functorial weak terminal object we

need to reverse the natural transformation 0.

Assume now that @ in 4.2 is a natural isomorphism and let [ : I — A bea

diagram. We can induce then a functor R’ : Cocone(H!l) — Cocone(I) such

1a i Rup —f Rfi
that R(HTI—B), = (Pl 11. RB); and R'b = Rb for every b :

(TT se B);-> (i at. B'); in Cocone(HT). We have that H induces a functor

H' : Cocone(T) — Cocone(HT) such that Hiri. A), = (Al ——- ity HA),



fiand H’a = Ha for every a: (I yi (rr tL ay, in Cocone(T). We can
induce a natural isomorphism

Cocone(T) Cocone(HT)

mona
(4.3) Cocone(T

such that 6(P[ —~— ft, A), = 0A: (01 Rar FAS py ay, 3 (Tr-te A);

Theorem 4.6. Jf 6 in 4.2 is a natural isomorphism, then any diagram Tl: I > A

such that pte. AL. B has a functorial weak colimit (functorial weak limit) in B
has a functorial weak colimit (functorial weak limit) in A. In particular, if A has

split idempotents then T has a colimit (limit) in A.

H
A—— B has a functorial weak colimit in B we have thatProof. Since I E

the category Cocone(HT) has a functorial weak initial object. Since @ is a natural

isomorphism we can induce @ in 4.3. By Proposition 4.5 we have that Cocone(T)

has a functorial weak initial object, that is [ has a functorial weak colimit in A. If

A has split idempotents then by Lemma 4.3, Cocone(I) has split idempotents. By

Proposition 4.2 Cocone(T) has an initial object. This initial object is a colimit for

Tin A. Oo

Remark 4.2. In the cases we are going to consider the category B will have split

idempotents. This implies that A has split idempotents (provided @ is a natural

isomorphism). Indeed, if a: A — A is an idempotent in A then Ha is an idempotent

in B. Splitting Ha and applying R we obtain a splitting of RHa, use now that @

is iso. We will also have a colimit (limit) of the diagram fee in B. In
this situation the colimit for [ in A is obtained as follows; take the colimit cocone

(HT I—“+ lim HT), in B, this gives a cocone

Hors} RH.
(HTI HRHTI * HRlim HY),.
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This induces an arrow 7: lim HT — HRlim HT such that for every J the diagram

HY I ——+— lim HT

HRiz;o wor Wa
(4.4) HRlim HT

commutes. Then 6R(lim HT) o Ry is an idempotent and a splitting of it produces

the colimit of [ in A.

Remark 4.3. As aconsequence of Theorem 4.6 we obtain that if a category is a retract

of a complete category (in the sense that @ in 4.2 is the identity) then it is complete.

This result appears in [7]

4.4 Pretoposes Revisited

We know from 1.6 that we have a 2-adjunction ee Denote by T' the

generated 2-monad. We use the results of the previous section to show that if a left

exact category C has a T-algebra structure then C is necesarily a pretopos.

Recall that for any H:C — Din Lex, FC = (Seto) .on and F(H) = Lanyer.

Let T = (T,n, «) be the 2-monad generated by F 4 U.

If we start with an T-algebra (C, ©) we have the following commutative diagram

C
4 TC

Nf
C

Remember that 7C is the factorization of the Yoneda embedding through TC and

C = (Seto) on

1

since C has split idempotents, we have by Theorem 4.6 that C has colimits of all

C
-.TC has a colimit

in TC. It follows that C has initial object, finite coproducts and coequalizers of

those diagrams [ : J — C for which the diagram pag

equivalence relations (equivalence relations are preserved by 7C as it is left exact).

Proposition 4.7. [f(C,®) is a T-algebra then the initial object in C is strict.



Proof. Denote by 0 the initial object of TC and by O the initial object of TTC =

(Set(Set© Yeon)? ) on. Following the image of the unique arrow O — TC(_,0) around
the commutative diagram

uC
(Set((Setr eon)? ) > (set?) 1

Langop | ®
cop

(4.5) (Set dash © CG

we have on the one hand that ®(w~C(O — TC(_,0))) = ®(19) = loo, and on the other

©(Langx(O — TC(_,0)) = (7) where y : O— C(_, ©0) is the unique morphism

from 0 to C(_,®0). Since the initial object in C is obtained as a splitting of ®(7)

we conclude that the initial object in C is ®0. Given any arrow f : D> C inC we

have that the square

0 0

C(., D) ao

C(-, f)

is a pullback. Applying ® we obtain the pullback

60 —— 60

; |
D—F~

Therefore the initial object of C' is stable under pullback. This means that the initial

object is strict. O

Proposition 4.8. /f (C,®) is a T-algebra then finite coproducts in C are disjoint

and stable.

Proof. We do it for binary coproducts. Let C,D be objects of C. Consider the

arrow

TO(.,C(.,C)) + TC(.,C(., D)) Se Teen. ro(_, C(.,C) + C(., D))
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in TTC where 2, : C(-,C) + C(_,C)+ C(_, D) and i2 : C(_, D) + C(_,C)+ C(_, D)

are the correspondig injections. We chase the arrow (TC(_,21),7C(_,22)) around

the diagram 4.5. We obtain ®(wC((TC(_,%1),TC(-,22)))) = ®Uecy+er.p)) =

le(c(_c)+c(_,D)) on the one hand, and

®( Langon((TC(-i1), TO(., i2)))) = O((B(i1), B(éa)))

on the other. Since the coproduct in C is obtained as a spliting of the idempotent

©((®(21), ®(72))) we have that ®(C(_,C) + C(_, D)) is the coproduct in C of C and

D. In other words 6(C(_,C) + C(_, D)) =C + D. We have that the square

0 C(., D)

| fs
C(.,C) + C(_,C)+C(.D)

al

is a pullback. Applying ® we get the pullback

©0 D

C a C+D

That is, the coproducts in C are disjoint.

For stability we use Lemma 1.6. Suppose we have C + D (hh) B-LAinc.
Then we have the pullback

Alot) + Como’ cy 4 eC, D)

(C(_, 711), C(-, 721) | | (C(-, fr), C(-, fr))

C(-, Pi) + C(-, P2)

where the squares

P, 712 C Py 722 D

A 7 B A 7 B
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| 29

are pullbacks. Applying ® we get the pullback

P, + P; TM12 + M22 C+D

(11, 721) (fi, fa)

A 7 B

Therefore finite coproducts are stable in C. oO

Proposition 4.9. [f(C,®) is a T-algebra then C has stable quotients of equivalence

relations.

ry . . . . .
Proof. Let R= C be an equivalence relation in C, consider the quotient

Cla ti) qd
,C —— a(., R) Ol) )—+Q

in TC and the quotient

TC _C - Py

10... C(.. 2) + rele(..0)) +2
TC({C(a7))

in TTC. There exists then a unique arrow t: Q — TC(_,Q) such that the diagram

TC(.,C(.,C)) —~— 9

roa fe
TC(_,Q)

commutes. It is easy to see that wC(t) is an isomorphism and therefore ®(uC(t)) is

an isomorphism. On the other hand we have that ®(Lang,,(t)) = ©(Q aie C(_, ®Q))

where ¥ is the uniqu arrow that makes the diagram

ood) +9

C(.,®Q)
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commute. Since the coequalizer of (r,r2) in C is obtained by splitting ®(+), we have

that the coequalizer is ®(q) : C + ®(Q). Since the square

is a pullback, applying ® we get the pullback

ry

R C

Car 40

That is, @g is a quotient in C of the equivalence relation (71,72). We show that q

is stable. Suppose we have an arrow g: D > ®Q in C. Consider the pullback

2
P C

“ls
D 7 oQ

in C, and the pullback

U =2 Q

(4.6) eel) Clghiat eine?

in TC. There exists a unique arrow q': C(_,P) = U such that the diagram
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commutes. Since the diagrams above involving P and U are pullbacks it can be

shown that the square on the right in the previous diagram is a pullback. Consider

the diagram

f——+%, P

| |e
S, R—— C

aa
P a

r2

in which every square is a pullback. Since the inner square in the commutative

diagram

C(.,8) C(_, P)

C(_, my/
)c., Aye o(c)

is a pullback it is not hard to see that the outer square is also a pullback. Therefore

the kernel pair of g’ is C(_,S) == C(_, P). Since quotients of equivalence relations

are stable in TC and q’ is the pullback of g along uz we have that the diagram

/ /

C(..8)— Cl. P) 1. Uisa quotient diagram. Therefore P et, ®U is the quotient
of the equivalence relation S—== P in C. oO

As a corollary we have

Proposition 4.10. [f(C,®) is a T-algebra then C is a pretopos. Oo
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Similarly we can show

Proposition 4.11. /f (F,y):(C,®) + (D,W) isa T-ALG morphism then F is an

elementary functor. oO

4.5 2-Algebras Over CAT

4.5.1 CAT over CAT

Consider the 2-adjunction

CAT’?

Set) | | Set

CAT

whose unit 7A : A + CAT(Set4, Set) is evaluation, that is nA(A) = ev, and

nA(a) = ev, for every a: A — A’ in A, and whose counit -=B : CAT(Set®, Set)

B in CAT” js also the evaluation B + CAT(Set®, Set). We consider the 2-monad

T =(T,n, “) generated by the 2-adjunction above. We have that

pA : CAT (SetCAT(Set*. Set) Set) . CAT( Set, Set)

is such that wA(L)(G) = L(eva), wA(L)(o) = Liev.) and wA(h)(G) = hevg for

every h: £- L' in CAT SetP ATs" ae) Set) and every a: G => G’ in Set“.

Given a diagram [': I > A we will denote the composition

rte aA car(set4, Set)

by evr.

Proposition 4.12. [f(A,®) is a strict T-algebra then A is a complete and cocom-

plete category and ® preserves limits and colimits of diagrams of the form evr with

T:Is A.

Proof. We have the commutative diagram

A
A”. CAT(Set4, Set)

INA
A
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Now, A has split idempotents (see Remark 4.2) and by Theorem 4.6 we have that

A is complete and cocomplete. Let [ : I — A be a diagram. To obtain the limit

for Tin A we have to proceed as follows according to Proposition 4.6: First we

consider the limit cone (lim evp—+ evry) in CAT(Set“, Set). To this we apply
I

® and we get a cone ei evp) —- TI), in A. From this one we obtain the

cone (ev, lim evry) )(a)— 1. evr); in CAT (Set, Set). There exists then a unique

arrow ¥ : eve(lim ev) — lim evr such that for every J in I the diagram

.

eV@( lim €vp) a CVoevp, = CULI

N\A
lim evr

commutes (compare with 4.4). We have that ®y : @lim evp — ©lim evp is an
I I

idempotent and the limit of [ in A is obtained by splitting @y. It is enough

then to show that ®y is an isomorphism. To do this consider the unique arrow

AtCAT (Set ety Set)C :eulim evp — lim eve, in CAT (Se that makes the diagram

ev(lim evp) €Veup;

(4.7) Lim €veup

commute. We chase ¢ around the commutative diagram

CAT(Set®, SetCAT (Set AT(St* Set) Set) ( CAT (Set, Set)

ra|
A

(4.8) CAT(Set”, Set) 3 A.

Observe that if G: A — Set we have

CAT(Set®, Set)(ev(lim evp)(G) = ev(lim evr) © Set®(G)

= elim evp(Go ®)

= G(A(lim evr))

= (eve(lim evp) )(G)
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Similarly we have that

CAT(Set®, Set)(lim ever.) = lim evr

So applying CAT (Set®, Set) to diagram 4.7 we obtain the commutative diagram

eve(lim evp) ——1+ €Voeup

CAT (Set”, Set) 10\, wy;
lim evr

That is CAT(Set®, Set)(¢) = +. Therefore ®(CAT(Set®, Set)(¢)) = (7). On

the other hand it is not hard to see that wA(¢) = l(lim evy) and therefore ®(uA(¢)) =

Proposition 4.13. /f (H,y) : (A,®) — (B,W) is a morphism of T-algebras then

H:A— B preserves limits and colimits.

Proof. Let I be a small category. Consider

n At ae &
A! + CAT (Set4, Set)! CAT(Set“, Set)

HF | | CAT(Set", Set)? CAT(Set”" , Set) H
val

B' —_+ CAT Set”, Set)! Tm CAT (Set? , Set) B
1B ae v

It is easy to see that the middle and left squares above commute. Given: IJ = A

we obtain with the help of the coherence diagrams the commutative diagram

H(®(lim evr)) 22" wry

v lim evr Wry

W(lim evyr)

Colimits are done the same way. Oo

Notice that y above gives the isomorphisms ¢ylim evr : H(limT) 3 lim HT and

(ylim evr)"

lim on B.

: lim HY — H(lim 1) induced by the universal property of lim and
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4.5.2 LEX over CAT

Similarly we can consider the 2-adjunction

LEX”

Set) | | EEX(, Set)

CAT

and carry over the same argument. We obtain a 2-monad that we (also) denote by

T =(T,n,). The corresponding proposition is

Proposition 4.14. [f (A,®) is a T-algebra then A has all limits and filtered col-

imits. Furthermore ® preserves limits of the form rl. atTA. LE X(sSet4, Set)
A

and colimits of the form y 2. ATA. LEX (Set*, Set) where J is filtered. If
(H,y) : (A,®) > (B,W) is a morphism of T-algebras then H preserves limits and

filtered colimits. Oo

4.5.3 PRETOP over CAT

Consider now the 2-adjunction

PRETOP”

Set’) | Mod(.)

CAT

and the generated 2-monad T = (T,7, 4). We have

Proposition 4.15. [f(A,®) is a T-algebra then A has filtered colimits and ® pre-

serves colimits of the form 1. a4. Mod(set*). If (H, yp) : (A, ®) > (B,Y)
is a morphism of T-algebras then H preserves filtered colimits. oO

It is to be expected that in this setting we can give a pre-ultracategory structure

to any T-algebra (A,®) in much the same way as we have constructed limits and

colimits up to here. This is what we do now.
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We define the 2-functor W : T-ALG — PUC as follows. Given (A, @) in T-ALG

then the underlying category of W(A,®) is A and given an ultrafilter (/,U/) define

[U]w(a,e) : A’ > A as the composition

ip

A! (A). Moa set)! UL. Moa(set*)-2+ A.

where [2] denotes the usual ultraproduct functor of models. If (H,y) : (A,®) -

(B,W) is a morphism of T-algebras, then we define W(H,y) = H together with the

natural isomorphisms

A! (Uwe)

I

H glnA) | #
qT

# [U\w(B.w) ne

The natural isomorphism y[U](n A)! has the domain and codomain shown above due

to the fact that the diagram

A! tial, Mod(Set*)! 4] Mod(Set*)

a (Mod(Set"))! Mod(Set" )

pi 1B), Mod(Set®)! at. Mod(Set®)

commutes on the nose. If r : (H,y) — (K,w) : (A, ®) — (B,W) is in T-ALG define

W(r) =1t: H — K. We have to show that 7 is a pre-ultranatural transformation.

It is easy to see that

Mod(Set" )!

(A)! Ay] ByIA—+—— Mod(Set”) | Mod(Set’)! _, Mod(SetTM)

equals Mod(Set* )!

H!

I

Alc | ts! WE) yoa(set®)!
K
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Mod(Set" )

, Mod(Set")!
Mod(Set*) Mod(Set*)

equals

Mod(Set”)!

Mod(Set*)! ae Mod(Set®)!
i a

Mod(Set* )!

Since T is a 2-cell in T-ALG we also have that

Mod(Set" )

Mod(Set*) | Mod(Set’)

Mod(Set* )

x
A

®

| Mod(Set’)

equals

It follows that

Se ee eee

Mod(Set®)

Mod(Set* )

el Mod(Set®)

Mod(Set®)

U

B
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That is, rT is a 2-cell in PUC. This completes the definition of the 2-functor W.

Given a pretopos P define ®p: Mod(Set°“")) — Mod(P) such that

for every M in Mod(Set*°“)) and every P in P. It is easy to see that @p(M)

is an elementary functor. If h : M — N is a morphism in Mod(Set*4(")) define

® p(h)(P) = h(evp) for every P € P. Notice that the 2-adjunction

PRETOP®

Set) | Mod(_)

CAT

gives us the comparison 2-functor PRETOP®” — (T-ALG), and it is not hard to

see that this functor is such that P ++ (Mod(P),®p) for every pretopos P. The 2-

functor in the following definition is simply the comparison 2-functor PRETOP —

(T-ALG), followed by the inclusion (T-ALG), > T-ALG.

Definition 4.3. Let (Mod(_), ®;_)): PRETOP® — T-ALG be the 2-functor such

that for every 2-cell

in PRETOP we have that (Mod(-), ®(_)) applied to it gives

(Mod(E), =)

(Mod(Q),®a\__ | Mod(r) > (Mod(P),

(Mod(E"), =)

In particular when P is the full subcategory of Set**° whose objects are the

finitely generated functors, where Seto is the category of finite sets, we have that

Mod(P) is equivalent to the category Set where the equivalence is given by evin :

Mod(P) — Set where in : Set) — Set is the inclusion. It is not hard to see that

® p defined above corresponds to the functor Use, : Mod(Set***) — Set defined as

VserM = M(idser). This gives us the T-algebra (Set, V sez).



Proposition 4.16. The functor W :T-ALG — PUC defined above is such that

W (Mod(P),®p) = Mod(P)

for any pretopos P. In particular W( Set, Vs.1) = Set.

Proof. Let (J,U) be an ultrafilter then [(U]w(mMod(P),6p) is the compositon

Mod(P)'
Mod( py! MOP) Mod seta(?)y!

[4]

Mod(P) oe Mod(Set°4?))

If we start with a family (M;); in Mod(P)' we obtain the model ® p(T]; evm,/U) in

Mod(P). For any P in P we have

Pe([T evn, /U)(P = [Tews /U(evp) = [Tewna( (evp)/U = Ltt P/U.

Therefore [U]w(moa(P),p) : Mod(P)' — Mod(P) is the usual ultraproduct functor.

O

In other words we have a commutative diagram of 2-functors

PRETOP” T-ALG

Mod(-_) W

PUC

(H, 9)Proposition 4.17. Given a morphism (A, ®) (B,W) in T-ALG we have

that the category (Set, W ser) (4%) is a pretopos and (Set, W ser) 74) is an elementary

functor. Furthermore, the corresponding limits and colimits are created by the forgetful

functor (Set, Vse1)'49) — Set’.

Proof. We only do the finite limits to illustrate the point, the rest of the construc-

tions are done similarly. Suppose T : J > (Set, Wse1)(4®) is a diagram with J finite.
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Denote the image of J under I’ by the pair ('J,7J). Then for any M in Mod(Set*)

. we have yJ(M):TJ(®M) — M(TLJ). Consider the limit lim PJ in Set“. We want
J

a natural isomorphism 7+

Mod(Set4) —2~ 4

v
Set

Mod(set2TM ") lim TJ
Z

Mod(Set**)
Vv Set

Let M be an object of Mod(Set*) let yM be the unique arrow that makes the

following diagram commute

lim TJ(®M) at TJ(®M)
Pf

aM yJIM

M(lim PJ) —* lim M(CJ) + M(PJ)
J J

for every J in J, where the iso Mim TJ) pe M(LJ) comes from the fact

that M is an elementary functor. It is not hard to see that 7 is indeed natural,
| satisfies the coherence conditions and that (am P'J,y) is the limit of the diagram

| [T: J > (Set, Vse,)'4%). O

We can then make the following definition

Definition 4.4. Let P denote the 2-functor

P =T-ALG(_, (Set, Vs.1)): T-ALG —= PRETOP”

We define now a new 2-monad S = (5, €,v), this time over T-ALG.

In view of proposition 4.17 we can regard the category Set as a schizophrenic

object in the categories PRETOP and T-ALG. This gives rise to the 2-adjunction

PRETOP”

T-ALG
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| with unit € : tdp_4pq — (Mod(-),®/)) oP such that for every a: A > A’ in A,

. §(A, ®)(A) = (eva, 7(A, ®)) where

Mod(Set*) 2 A

, Moat set'A) ee f(A, ®)
| P(A.) d| 

Mod(Set"'4*)) == Mod(P(A, ®))

is such that for every M in Mod(Set“) and (H,,) in P(A, ®) we have

(A, ®) M(H, 2) = pM

) and €(A,©®)(a) = ev,, and counit ¢: Po (Mod(-_), ®(_)) = idprerop- such that for
| every pretopos P, (P : P — P(Mod(P), ©p) is CP(P) = evp and ¢P(p) = ev, for

every p: P > P’ in P.

This 2-adjunction induces the 2-monad S = (S,é,v) where S : T-ALG 3 T-ALG

| is the composition

P (Mod (_), ®_))T-ALG——+ PRETOP” T-ALG

€ is the unit and v(A,®)(L)(H, y) = L(evy) for every

and (H,y) : (A, ®) > (Set, Use.) in T-ALG.

H We consider the 2-category S-ALG of strict S-algebras and homomorphisms of

S-algebras. This category has the same description given in the previous section for

T with S in place of T and T-ALG in place of CAT. For later reference we explicitly

describe this category. An object of S-ALG is of the form ((A, ®), (0, @)) or simply

(A, ®,(©,0)) where (A, ®) is an object of T-ALG and

(0,0) ; (Mod(P(A, D5 74,6) 2 (A, ®)

makes the corresponding diagrams for an S-algebra commute. If we have another
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where (H,y) : (A, ®) — (B,Y) is a morphism in T-ALG and s is a natural trans-

formation

(Mod(P(A,®)), p40) 2). (4,6)

(Mod(P(H,2)),=) Aka

(Mod(P(B, ¥)), ®p(,9)) (B, v)
(X, x)

that satisfies the usual coherence conditions. s being a 2-cell in T-ALG means that

Mod(Set4?(2.))

Mod(SetTM4?(4,®))) Mod(Set*) Mod(Set”)

) Lae
Op(4,6) | Mod(SetTM) Mod(Set*) Mod(Set”) |y

(4.9) Mod(P(A,®)) —~@— 4 i B

equals

(4.10)

P (Hg)

Mod(P(A,o jah a Mod(P(B,w)), Mod(Set*)Mod(SetTM4l?(4.9))) Mod(Set°4?(8.%))) —————_+ Mod(Set®)

D>(B.w) =
Mod(P(B

Mod(P(

on eee —

A 2-cell tT : ((Hy),s) — ((K,v),t) : (A, ®,(0,8)) — (B,WY,(X,yx)) is a 2-cell
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T:(A,®) > (B,W) in T-ALG such that

Mod(P(K,1))

(Mod(P(A,®)),Op(4,.0)) _ | Mod(r) (Mod(P(B,¥)), ®p5,y))

(0,6) Mod(P( Kb) i. (X, x)

(4.11) (4, ®) (H, y) BY)
equals

(Mod(P(A,®)), ®p(4,6)) oY) Mod P(B, V)), ®pr5.0))
(0, 6) | (K,v) a | (X, x)

> ae.
(A, ) i

«Ll

(B,¥)

Next we define a functor Z: S-ALG — UC. First consider the composition

s-aALg—-r-atg—”- puc

where U denotes the forgetful functor and W was defined above. Given an S-algebra
(A, ©, (0,4)) the underlying pre-ultracategory of Z(A, ©, (@, 0)) is W(A,®). Let G
be an ultragraph, k and / nodes of G and 6 an ultramorphism

| 6 Set

ev]

on Set. We want to define 62(A,6,(0,8))

EVE

U D(G, W(A, ®)) Sf betasiom +

eV

A.



114

Let D € UD(G,W(A,®)). Define D: P(A, ®) — UD(G, Set) such that

—

D(H,y)=HoD:GaA

and D(r) = 7D for every T : (H,y) > (K,) : (A, ®) — (Set, User). We have

to show that H o D is an ultradiagram. Let 8 € G’. Since D is an ultradiagram

we have an isomorphism D(8) — [Ug]wra,e)((D(ga(2)))1,) and therefore we have an

isomorphism

~ I

H(D(8)) = H(Hi,D(ga(i)) (Ut) 2A T,, 1 D(99(i))) (Uo.

Next we have to show that 7D is a morphism of ultradiagrams but it follows easily

from the fact that W(r) is a pre-ultranatural transformation that the right hand side

square in the diagram

I

H(D()) ——~ H(ti,D(goi)) (Uta) LMA 1, sa (D(g(i))) Uo
r D(B) T(I]i,D(ga(2))/Us)) Iz, 7(D(ga(¢)))/Us

K(D(8)) —— K(Il1,D(ga(t))/Ug) Dear Ne K(D(ga(?)))/Ue

commutes while the left hand side square commutes by the naturality of tr. We have

now an easy lemma.

Lemma 4.18. The functor D: P(A, ®) — UD(G, Set) is elementary.

O

Consider the diagram

EVE

D goes
P(A, ®) U D(G, Set) peste tee Set

ev

Notice that the top composition is evpi,) and the bottom one is €vp(i). Since the
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diagram

A,®

(4,6) 4:9). (Moa(P(A, 4), d>49))

2d 4,0) 6)

(A, >)

commutes we have

D(k) = @(ev, 0 D) O(5D) Q(ev o D) = D(l).

Define 5z(.4,0,0,9))(D) = @(6D).

Lemma 4.19. 67(4,9,(0,9)) : evk — ey : UD(G,W(A,®)) — A defined above is a

natural transformation.

Proof. Let d: D — D': G— W(A,®) be a morphism of ultradiagrams. We can

induce then the natural transformation d: D 3 D’ : P(A, ¢) — UD(G, Set) such

that d(H, ) = Hd. Consider
—

D CUE

P(A,®) — |d > UD(G, Set) |§_> Set.
D! EVI

This gives us a commutative square

ev,D ad, ev D
ev.d | evjd

= a

ev, D' — ev,D
6D'

in Mod(Set?‘**)), Notice that ev,d = evqg, and therefore Q(ev,d) = dk. Similarly

Q(ev,d) = dl. Applying O to the square above we obtain

6 DD(k) Z(A,%,(0,8)) D(1)

dk dl

D'(k) D‘(1)
62(A,0,(0,0)) D’ gO
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With this definition of 6z(A,®,(0,0)) we have that Z(A,®,(0,6)) is an ultra-

category

Proposition 4.20. For every morphism ((H,v),s) :(A,®,(0,0)) > (B,V,(X, y))

in S-ALG we have that the pre-ultrafunctor H : W(A,®) — W(B,W) is an ultra-

functor H : Z(A,®,(0,8@)) > Z(B, WV, (X, y))

Proof. Let 6: ev, — ev; : G — Set be an ultramorphism. We have to show that

H67(4,6,(0,6)) = §2(B,v,(X,x))U D(G, W(H, ¢))

That is we want to show that H(@(5D)) = X(6HD) for every D € UD(G,W(A, ®)).

Observe first that the diagram

_—__

P(B,v) #4. ud:

P(A, ®)

In) Wet)

commutes. Then 64D = 6DP(H,¢). Using the naturality of s we obtain the

following commutative diagram

H((ev4D)) 2 x (ev, DP(H, y))
H(@(éD)) | x(6HD)

H(@(evD)) a X (ev) DP(H,¢))
Sev]

Using the fact that s satisfies the coherence axiom involving the unit and that ev,D =

evp(k) we have that s ev,D = tdy p(k) oO

Define Z((H,¢),s) = H.

It is clear that for a 2-cell r : ((H,~), s) > ((K,W),t) we have that r : W(H,y) 3

W(K,~) is a pre-ultranatural transformation, therefore

tT: Z((H,y),s) > Z((K,¥),t)

is an ultrafunctor. Define Z(r) = T.
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This completes the definition of Z : S-ALG — UC. So we have a commutative

diagram of 2-functors

S-ALG—4 UC

T-ALG W PUC

where the vertical arrows are forgetful 2-functors.

We obtain a comparison functor PRETOP®” — (S-ALG), whose composition

with the inclusion (S-ALG), ~ S-ALG we call

Mod( ), ©,.),(@;),=)): PRETOP® — S-ALG.(-) (-)

It is easy to see that for every pretopos P, every model M in Mod(P(Mod(P),®p))

and every P in P we have that Op(M)(P) = M(evp)

Proposition 4.21. The functor Z : S-ALG — UC is such that for every pretopos

P we have Z(Mod(P),®p,(Op,=)) = Mod(P)

Proof. By Proposition 4.16 we already know that the underlying category of

Z(Mod(P), ®p,(Qp,=)) is Mod(P). So all we have to check is the ultramorphisms.

Let 6 : ev, — ey, : UD(G, Set) — Set be an ultamorphism and let D be an

ultradiagram in UD(G, Mod(P)). Then for every P in P we have

57(Mod(P),p,(0p,.=))D(P) = Op(6D)(P) = SD(evp) = 6(evp o D) = 6D(_)(P).

O

As before, when P is the full subcategory of Set*** consisting of the finitely

generated functors we have that (Mod(P),®p,(Op,=)) is essentially

(Set, V ser, (Xset, =))

where X set = €Vids.,- AS a consequence of the above proposition we have

Z(Set, WV set, (X set, =)) = Set.
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Proposition 4.22. For every object (A, ®,(0,6)) the category

S-ALG((A, ®, (0, @)), (Set, User, (X set, =)))

is a pretopos and for every morphism

(A, 6, (0, 6)) 22) 8). (Bw, (x, y))

in S-ALG the functor S-ALG(((H,¥),s), (Set, ®set, (Xset.-=))) is an elementary

functor. Furthermore the corresponding limits and colimits are calculated pointwise.

Proof. We do binary coproducts to illustrate the point, all the other constructions

are similar. Suppose we have

(H, 9,8), (K,v,t) : (A, ®,(0,0)) > (Set, V ser. (Xser, =))

in S-ALG((A, ®, (0, 6)), (Set, User, (X set, =))). Consider first the coproduct

(H, e)U(4, d) = (ALK, 9’)

in T-ALG((A, ®), (Set, Use1)) where y’M is the composition

(H][K)(®M) = HOM][ KOM MTOM MHIIMK — M(AYIK)

for every M in Mod(Set*). We want to define s’ in

0,0)(Mod((Set, Vser)'4®)), ®p(4.)) ( - (A, ©)

Mod((Set, W ser)(#U*#’)) <! X set

(Mod((Set, V sex)!" 5«*)), Bp set,v5..)) (Set, V ser)
(ALK, 9’)

Given M in Mod((Set, Us.1)'4:?)) define s'M as the composition

HOMI[KOM Se, yee y)LIM(K, b) — M((H, y)H(K, v))
| |

(HUK)OM M(HIIK, ¢')
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It is easy to see that s’ is natural. We show now that the composition corresponding

to diagram 4.9 and the composition corresponding to diagram 4.10 are equal. Let £

in Mod(SetTM4(?(4:))) then from 4.9 and 4.10 for s and t we have that

L(s) 0 y(Lo Set®) o HO(L) = s®p4.4)(L)

L(t) o ¥(LSet®) o KO(L) = t®p(4.6)(L).

With these two equations it is not hard to see that

L(s’) fe) y(L fe) Set®) fe) AY K@(L) = s'®p(4,6)(L)

Therefore s’ is a 2-cell in T-ALG. We have a coproduct diagram

2 roo UK r
(Hye) —*+ (ALK, ¢') (Ky 9)

in T-ALG. To show that zy : (H,y,s) - (ALK, ¢’, ’) is a 2-cell in S-ALG all we

have to show (according to 4.11 and 4.12) is that

HOM 4 M(H, ) ee (HK, v)

equals

Hom #2. (ytK)em = HoMypKoM MUM ca EM (Kv)
~

M(ALIK, ¢’)

for every M in Mod(P(A,®)), but this is readily seen to be the case. The universal

property also follows easily. O
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Chapter 5

Algebras Over Los Categories

In 4.5.3 we saw how to obtain pre-ultracategories from algebras over CAT, that is,

we constructed pre-ultrafunctors with the help of the structure map. We saw as well

how to obtain some of the ultramorphisms. We needed however a second monad

to be able to introduce general ultramorphisms. In this chapter we avoid the first

monad by working in the category fos. Notice that we introduced this category

with the express purpose of dealing with ultraproducts. With the category Los we

also obtain some of the ultramorphisms, however we do not see how to get the general

ultramorphisms. In this short chapter we define a monad over Los and show how

we can obtain the general ultramorphisms for algebras over this monad. On the one

hand this simplifies the notation since we are dealing only with one monad and the

rest of the structure is given by the Top-indexing, on the other it provides a nice

setting in which, we hope, the other side of Makkai’s duality can be proven, namely

characterize those categories that are of the form Mod(P) for a small pretopos P.

Notation Given a Top-indexed functor F : A — B and a discrete topological

space I we denote by F! : A! — B! the corresponding F for the topological space J as

TF?
opposed to the product functor [], A’? Il, 8) that we denote by F?: A’ = B’.

5.1 Los Categories and Pre-Ultracategories

We define first a functor Sos — PUC. Given a category A in Los we construct a

pre-ultracategory as follows. The underlying category is A = A’. Given an ultrafilter

120



(1,U) denote by f : J > Iy the embedding and define [/]4 as the composition

Ate at te. yu 4g

where the first arrow is given by the fact that A is in Top-IND (definition 3.11). If

F:A— Bin Los consider F! = F : A — B and define the natural isomorphism

[U, F] as the pasting

at gt. gw

pl y FI y plu y F

Bt ; Bu". B

where the two natural isomorphisms on the left are given by the fact that F is in Los

(definitions 3.11 and 3.14) and the one on the right is given by F being Top-indexed.

It is easy to see that this construction does define a functor Los — PUC.

If P is a pretopos then it is clear that the pre-ultractegory we obtain as the image

of MOD(P) under this functor is Mod(P), as a particular case we have that the

image of SET is Set.

5.2 Algebras Over Los Categories

From Proposition 3.13 and the remark after the proof we have a 2-functor

Los(_,SET): Los PRETOP”.

On the other hand we have the 2-functor

MOD(_): PRETOP” — Los.

We obtain a 2-adjunction

PRETOP”

Los(_,SET) | | MOD(_)

Los
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whose counit €P : P — Los(MOD(P),SET) is P + evp for any pretopos P and

Pin P. The unit nA: A> MOD(Los(A,SET)) is such that for any A € Los

any topological space X, any A in A* and any 7: F > G in Los(A, SET) we have

(nA)*(A)(F) = F*(A) and (n.A)*(A)(7) = 7*(A). It is easy to see that for every

A in A* the functor nA*(A) : 2o8(A,SET) 4 Sh(X) is elementary. We have to

show that for every A in Los the functor 7A is indeed in Las. We show first that

it is Top-indexed. Given a continuous function f : Y — X we need a transition

isomorphism 7A” o f* + f* onA*. Let A in A*® and F in Los(A,SET) then we

want an isomorphism f*7A*(A)(F) > nAY(f*A)(F). That is f*F* A 3 FY f*A.,

Since F is Top-indexed we have an isomorphism f*F* A — FY f*A that we can use

to define the isomorphism we are looking for.

It is easy to see that nA is Los. Assume f : Y > X is ultrafinite in Top, we need

to show that

unit n AX f, - ~nA* counitf 7)fof'nAX f.— fan AY f fan AY

is an isomorphism. Take A in AY and F in Qos(A,SET) and if we apply the above

” A* i.

composition at A at F we obtain

unit FX f,A f. FY counit A
F* f.A he Ppa Pa fanF” A

that is an isomorphism since F' is Los.

We obtain therefore a 2-monad T = (T,n,) over Qos. Consider the category

T-ALG of T-algebras. We define now a 2-functor T-ALG + UC. Let (A,®) bea

T-algebra, consider first the pre-ultracategory A constructed from A as in 5.1. Notice

that for any ultragraph G composing with nA! : A + Mod(Los(A,SET)) induces a

functor UD(G, A) — UD(G, Mod(Los8(A,SET))). If we have an ultramorphism

CUE

UD(G, Set) — |5 > Set

eves

over Set define 64 = 9! 0 6ypa¢o4A,seT)) 0 U D(G, 7A’)

Lemma 5.1. /[f (F,y): (A,®) > (B,W) is a 1I-cell in T-ALG then F: A — B is

an ultrafunctor.
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Proof. Simply put the following diagrams together

UD(G iupg, A) UP(G4) UDG, Mod(£08(A, SET)))

U D(G, F) U D(G, Mod(Los(F,SET)))

UD(G,B U D(G, Mod(L0s(B,SET

CUVUk

U D(G, Mod(£os(A, SET Tannen Mod(£05(A,SET))
eve

U D(G, Mod(Los(F,SET))) Mod(Los(F,SET))

CUE

UDG, Mod\20M8. SET) | agentes Mod(£08(B, SET))
and eve

Mod(£os(A, SET)) —°—- A

es

|

Mod(Los(F,SET)) H

Lemma 5.2. If 7: (F,y) — (G,w) : (A,®) — (B,W) is a 2-cell in T-ALG then

T:F 4G:A-—B is an ultranatural transformation. O

We obtain a functor T-ALG — UC. Notice that we obtain the following com-

mutative diagram

T-ALG UC

Los PUC

where the vertical arrows are forgetful functors.



Chapter 6

Indexed Categories of Coalgebras

In this chapter we generalize a result from [11] namely that there is an equivalence

between Top-ind(SET,SET) and Fult(Set, Set) given by

Fw F!

where Fiult(Set, Set) denotes the category of functors that preserve filtered colimits,

and use this generalization to show that if F : MOD(P) — S&T is a Top-indexed

functor then F! : Mod(P) — Set preserves filtered colimits.

We consider a special kind of Top-indexed categories, namely those that can be

defined at every X as a category of coalgebras of a cotriple on the category Al! for

some fixed category A (see below). The Top-indexed category SET defined in chapter

1 is an instance of these Top-indexed categories we will consider now. In particular,

for every topological space X, Sh(X) is equivalent to a category of coalgebras for a

cotriple defined over Set!*!. To be able to define these categories we need products

and filtered colimits in A. We start with the definition of the cotriples we need.

6.1 The Cotriple G*

Definition 6.1. Let X be a topological space, A be a category with products and

filtered colimits. We define the cotriple G* = (G* , e*,6*) over Al*! as follows:

Define G* : Al*! — Al! such that (Azr)cex tO (lim T] Ay)eex and (fz)
(Li II fy) UsryEU

wm ‘

Tas y cu”

124
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Define eX : GX — 1 such that (e*(A,)), is the unique map that makes

lim TA, (“(As))2 4
Uaty eu

tu /*

Ay
yeu

commute.

Define 6% : GX — G*G* such that (6*(A,)), is the unique map that makes

“| ae

lim A lim lim A:
om : (65*(A,))- Uavey IT Vou Hy

commute, where the top arrow is the unique arrow that makes

ll Ay. T]_ lim TA
yEU yEU VayzEV

lim |] A:
a

VayzEV

commute.

It is easy to see G* is indeed a cotriple.

6.2 Indexed Categories of Coalgebras

Now we are ready to define a Top-indexed category.

Definition 6.2. Given a category A with products and filtered colimits define the

Top-indexed category A as follows:

For every topological space X, A* is the category of coalgebras for the cotriple

G*,

For every continuous function f : X — Z and every coalgebra

(A, + lim [I Aw)
W3zwEeEw



in A? define

f(A, lim [I Au)) = (Age) 2S lim TI Aw lim TAs)
a —_——

W32zu Ew W3fxrwEew U3szryEeU

where the last arrow above makes the diagram

I] Ay —*W_. lim J] Aw
w ew W3frwew

I] Asy - lim J Afy
yef—w lf-lW Uszryeu

commute. We call A the Top-indexed category of coalgebras over A.

It is easy to see that we have defined a Top-indexed category. Furthermore, all the

coherence axioms on the definition of an indexed category turn out to be equalities

in this case. That is A is a strict Top-indexed category.

We will be intrested in the case where A = Set? for a pretopos P, in this case

we denote A by SET”. Notice that when P=1, we obtain the Top-indexed category

SET.

6.3. Filtered Colimits and Absolute Equalizers

It is shown in [11] that the category Top-ind(SET ,SET) of Top-indexed functors

from SET to itself is equivalent to the category Fult(Set, Set) of filtered colimit

preserving functors from Set to Set. It is our intention to generalize this result

to the category Top-ind(A,B) where A and B are the Top-indexed categories of

coalgebras over A and B respectively. However, to be able to do this we need more

structure on the categories A and B. See proposition 6.9.

Take a category A with products and filtered colimits. If D is a small directed

poset, and H: D—= A> isa diagram, denote Hd by

hod
Hod —_— Hyd

hid
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for d € D. Using ideas from [12] we have that one of the properties we need is the

following:

Definition 6.3. Let A be a category with products and filtered colimits, we say

that filtered colimits commute with pointwise absolute equalizers if for every small

directed poset D and, every diagram H : D — A> such that for every d € D, Hd

has an absolute equalizer eg : Eg — Hod in A, and the pair

lim hod
lum Hod lim H,d
d

d

also has an absolute equalizer in A, we have that the diagram

linvea lim hod
lim Eg——— lim Hod =
d d

A,d

se ia
d

is an equalizer diagram in A.

6.4 Some Topological Spaces and Their Associated

Coalgebras

Here are some definitions of topological spaces and continuous functions that we are

going to need later.

Recall from section 3.5 the construction of Xp for any small directed poset D.

Consider the topological space X} obtained form X p by adding a point oo not in Xp

and whose opens are the empty set and sets of the form U U {oo} with U a nonempty

open of Xp. The inclusion h: Xp — Xp is clearly continuous.

Let (J,F) be a filter. Define the topological space J¢ whose set of points is

IU {ar}, with ag ¢ I and the topology given by U C IU {ar} open iff ag € U

implies that U — {ar} € F.

In the case when (J, F) and (J, €) are filters with € C F we have a continuous

function hre : Ir — Ig such that h restricted to I is the identity and hre(ar) = ae.

If J C I we denote by S(J) the principal filter generated by J. That is, S(J) =

{Kk C1|K D J}



We will denote Sierpinski’s space by S, that is, S = {0,1} and the only nontrivial

open of S is {1}.

Ifj ¢ J C/I define hjy : S — Is) such that hjz(1) = 7 and hj7(0) = asczy

Consider the Top-indexed category A defined as above. Let’s take a look at the

category A* for X the spaces we just defined, and at the transition functors induced

by the continuous functions also defined above.

First of all, if we take the topological space 1, we have that A! is essentially A.

When we have a Top-indexed functor F : A — B where B is defined over a category

B as above, we have F! : A — B. Sometimes we write F instead of F! when it does

not lead to confusion.

It is not hard to see that A*¥> is equivalent to A?.

It is clear that A® is isomorphic to A.

A!* is equivalent to the category whose objects are maps A,, —> lim [] Aj,
. TEF jES

where A,, and the A; are objects of A, and whose morphisms :

f: (Aa; lim JI A;) > (Ba, 4 lim [] B;)
— a

JEFIET JEFIEI

are families of morphisms (fy, : Aa, > Ba,, {fj : A; ~ Bj},) such that the diagram

Abs T lam J] A;
JEFF ES

bo lim eZ
TEFLE S

Bay lem [] B;
JEFiEeJ

commutes. We will use this description of A/* systematically. In the case where

F = S(Jo) for some Jo C J we have that im =[[ A; =J] Aj. Then an object of
JES(Jo) EJ 1 € Jo

A's(40) with the description given above is a pair (As(y,) > Fj, (Ai)7).
1 € Jo

Now, consider the continuous function h¢ge : Ir — I¢ defined above, we have

that hye : Al’ + A’ is such that (A,, —> lim [J Aj) + (Aa, > lim [J] A; =
JEeejsed JEeéesed



lim J] A;) where the last arrow makes the diagram
JeFIES

Ty A; —- lim TA;
JEEJET

IN
lim [I A;
JEFIES

commute for every J € €.

For hj Jo : So I's( Jo) we have that hjgglAugcs,) = HAs, (Ais) = (Aas) =
a Yi [s)

I] A; —> A;
1 € Jo

6.5 The Category A*

When we have the topological space X} with D a small directed poset the situation

is a little bit less trivial. It is here that we use the property that filtered colimits

commute with pointwise absolute equalizers. Define L : A? > Al*é! such that

Li({Aa oa8, Aa }a—a') = (lam Aa; (Aa)a); and if { fa} 4 {Aq =e, Aa }a-d' —3 {By at
d

Bu}aoe then L({fa}) = (lim fa, (fa)

Lemma 6.1. /f A is a category with products and filtered colimits such that filtered

colimits commute with pointwise absolute equalizers, D a small directed poset then

the functor L: AP > Alo! defined above is cotripleable.

Proof. We use Beck’s tripleability theorem (see [13] for example). First, we need a

right adjoint. Define R : AlXb! 5 A” such that R((Aeo, (Aa))) = {Aco XI] Aan =

Ax XT] Aav}asa, where pag = Aco X projaa and projay makes the diagram
a’ fees da’

I] Agu _PTOJdd' I] Aa
dd d' —d

Tq | | Tq"

Aq Aqu
rr

commute. If (foo, (fa)) : (Aco; (Aa)) + (Boo, (Ba)) then R( foo, (fa)) = {foo xT fa}.

It is easy to show that R is right adjoint to L. Suppose { fa}, {ga} : {Aa pS eee —
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{By — By }a—a' is a parallel pair in A? such that L({fi}), L({ga}) has an absolute

ualize

Boca: (lira fa, (fa))
lim Ag, (A lim Ba, (Bz)).(lim dy (Aa)) Giman Ga) (Ging dy (Bu))

(€c0; (€a))
(Exo, (Ea))

Projecting from A!*>!, we obtain, for every d € D, an absolute equalizer

Ed

Ey Ag fa. Ba
Gd

and another absolute equalizer ;

lim fa
Coo d

9 limga «

d

Therefore, for every d > d' in D we can induce an arrow Ey > Ey such that

Ed
Eu Aq

Eq

commutes. It is easily seen that we obtain an equalizer diagram

tea} {Aq =? Av }ag 2 =¢B, — Bu Sad.
{ga}

Since filtered colimits commute with pointwise absolute equalizers we obtain that L

{Ey Evhaa

preserves these equalizers. It is clear that L reflects these equalizers. Therefore L is

cotripleable. 0

If we look at the cotriple generated by the adjunction L 4 R of the lemma we

obtain Gra: which means that the categories A? and AXB are equivalent. Now,
the comparison functor ®p : AP + A*B is such that ®pn({Ag att, Aa saa’) =

1 x lim (tg X (oaa'))

(im Ada 2 lim Ag X him (lim Aq x J] A); (Ag — TI Aa)), and
dit’ gs

®p({fa}) = him fa, (fa)). The quasi inverse Vp : AX — A? is a lot simpler,
Wp(Aw > lim [T] Aa, (Aa Ac x TL (At) = {Aa > Aco xf Aa ae

Taw deu ad’ —d
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Corollary 6.2. With the same hypotheses and notation as in lemma 6.1, the diagram

Alb re gb

A

commutes, where Vp is the functor just defined.

It is easily seen that the functor K : A? — Al*>! such that K({Aq 2%

Aw}a—a') = (Aq) p is also cotripleable and defines the cotriple G*2. Thus, in view of

the previous corollary we have that the categories A* and A*5 are equivalent. In

) the particular case when D = 2 we have that in X2 1 and co can not be distinguished
| from each other so and we will feel free to replace AX? by AS.

6.6 The Functor (_)':Top-ind(.A, B) — Filt(A, B)

) From now on we are going to suppose that A and B are categories with products and

filtered colimts such that filtered colimits commute with pointwise absolute equaliz-

ers and that A and B are the Top-indexed categories of coalgebras over A and B

respectively.

) Lemma 6.3. [f G: A= B is a Top-indezed functor then there exists a strict Top-
| indexed functor F : A — B isomorphic to G (in Top-ind(A, B)).

Proof. Let G : A > B be a Top-indexed functor. For any X in Top and any

xz € X, we have a continuous function x : 1 — X, and a natural isomorphism

x*G* -+ Gz*. Therefore, given (A, > lim TI Ay) in A*, we have a natural
UszxyEU

isomorphism z2*G* ((7,)) =; GA,. Define FX : A® — BX such that FX ((7,)) is

(GA, —> z*G((tr)) > lim TL y*G((t2)) a lim JIGA,). It is not hard to show
UszryEU UszryEU

that we obtain a coalgebra in this way and that the functor F is strict and isomorphic

toG. O

In view of this theorem we will assume that our Top-indexed functors are strict.
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Lemma 6.4. [f F: A B is a Top-indezed functor, then the square

AS Vo A?

Fs| |
ree

commutes up to isomorphism.

Proof. We are using A® instead of AX? | Now, consider the continuous maps
1

| l 3 S'. These maps induce the diagram
4 ——$$—

BS LP B’
,

owe F?

AS V2 A

O° jth 69 |zd| |6,

OF ee do |zd| |6;

A i A
A

Sf IN

B i B
B

in which it is easy to see that the front and back faces commute sequentially, and the

sides commute as well. Then it is not hard to see that the top commutes as well. 0

Lemma 6.5. For any directed poset D, the following diagram commutes



Proof. Let d — d’ be an arrow in D, consider the functor agy : 2 — D such that

(0 + 1) + (d - d’). Consider the continuous function Big : S — Xp, such that

8(0) =d and (1) =d’. Then it is easy to see that we have a commutative diagram

AS LP A?

AXS YD 4p

Fs FXS |r? FP?

Xt =<» pD
B*p Up B

Abie BX
Be T, B?

O]

The following proposition is an immediate corollary of these lemmas.

Proposition 6.6. [f F : A — B is a Top-indezed functor, then the functor F! :

A — B preserves filtered colimits.

Proof. It is enough, see [1], to show that F’’ preserves directed colimits. Consider

the diagram

BXE Au BP

O

The proposition allows us to define a functor ( )' : Top-ind(A,B) — Filt(A, B)

such that FH F! and r+ 7! for every



ne

in Top-ind(A, B).

—

6.7 The Functor (_): Filt(A,B) — Top-ind(A, B)

We define now a functor in the other direction. Given H € Filt(A,B) and a

topological space X, we define H* : AX — BX such that

A*((A, lim []A,)) =
Uszryeu

(HA, “3 H(lim T] Ay) = lim HT Ay) > lim TLHA,),
Uaryeu Usr yeu USsyeu

where the last arrow is the unique one that makes

H(T] Ay) lim H(II Ay)
y EU U3 yeu

Hn, /

HA,

BA
y y

HA, ——+ lim [J HA,
yeu tu UsryEU

commute, and H((fe)x) = (Hf,),z. It is not hard to show that we obtain coalgebras

and coalgebra morphisms with the above definitions. H turns out to be a strict Top-

indexed functor. We will show that, with the proper conditions on A and B, the

functors defined above give an equivalence of categories. Before the proof we need

some lemmas.

6.8 The Ultraproduct Transition Morphisms

Suppose F': A — B is a Top-indexed functor. Let X be topological space. For every

xz € X we have the continuous function z: 1 — X that sends the only element of 1

to x. This function induces the following commutative diagram

*

AX —+—- 4

P| E
Bx > B.



i

ll

I

If we start with a coalgebra (A, > lim [] A,) in A* we have that
UszryEeu

x*(F*((Az + lim T] Ay))) = F'(Az).
UsSzryEU

This tells us that F*((A; > lim [] A,)) is of the form °
Uszryevu

(F'A, 3 lim [] F'A,).
UsryEeU

In particular, when we have an ultrafilter (7,G) and and a family (A;); in A’, we

obtain the coalgebra

lim TIA; —> lim TIAj,
JEG EJ JEGIETI

in A’e. Then

F(lim TTA; —>lim [TT Ai): Fi(lim TIA) - lim [IFA
JEG iEJ Jecgjed JECj EJ JEG IES

We call this morphism yrg(A;);. It is not hard to see that yrg defines a natural

transformation lim [I (-)
Al JeGjes A

(Fl)! YFo “| F}

I

lim J] (-)
JEc ,ES

Lemma 6.7. If F: A= B is a Top-indezed functor then for every ultrafilter (I,G)

we have that

Fle(A,, + lim []Aj) = F(Agg) “} F(lim [J Aj) £3 lim [I FA;.
JEGIEJI JEGIET JEGIJEJI

Proof. Given A,, = lim |] Aj, consider the morphism
FEegies

Aug o lam [J A;
JEGIEI

o lim IT la, 7
TeCjEJ

lim T]A;—— lim ITA;
JEegcied JEG EJ

in A’? and apply F#*’. O
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6.9 Reduced Products and Ultraproducts

Finally, we need a condition on B. Given a filter (J,F), define Ur = {GIG is an

ultrafilter on J and F C G}.

Definition 6.4. We say that ultraproducts determine reduced products in B if for

every filter (I, F) and every (B;); € B’ we have that the family {lim [] B; a
JEF EJ

lim J] B;}ceu, is jointly monic, where 7¢g makes the diagram
Jeg ,eJ

Ty B; ty lim [I B;
—>

JEFIES

lim |] B;
JEegj,eEJ

commute for every J € F.

Using the fact that for every filter (J, F) we have that F = Qgeu,Q, it is not hard

to prove that the condition above is true for the category Set.

Lemma 6.8. Jf in B reduced products are determined by ultraproducts and F: A

B is a Top-indezed functor, then F is determined by the natural transformations yrg¢

for all ultrafilters (I,G).

Proof. Let (I,F) be a filter, and G € Ur. Now consider F : A — B, and the

continuous function hg¢ : Ig — I¢ defined after definition 6.3. We have then that

the following diagram

frees 5

Bir - Ble

hor

commutes. Following the image of an arbitrary A,, —> lim J] A; we have that
JEFIEST

: t d , otc FIF(¢
F's(A,, > lim [T[A; — lim J] Aj) is equal to the composition F'A,, —

JEFIES JEegieJ



eee eee, ae ee see
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JEFIEI Jeg ,eEJ

| lim [| FA; ae, lim J] FA;. Or put another way, we have that

| FA,, 02829) Pllim TAs)
JEG jE

F!F(c) YFG

lam [|] FA; ———~ lim [] FA;
JEFIEI LG JEG EJ

commutes. Since the family {izg}cgeu, is jointly monic, we have that F/*(c) is

determined by the natural transformations yrg with G € Ur. Now, given a topological

space X, and a point zr € X, let J] = X — {x} and F, = {J C I|JUrisa

neighbourhood of zr}. F, is a filter on J and there is a continuous function h : Iz, + X

such that Al; is the inclusion and h(az,) = x. Then we have a commutative square

h*

A* Alt:

B* h* B Ir,

Following the image of an arbitrary coalgebra we see that F'* is determined by

j {Fl} rex. O

6.10 Top-ind(A, 6) equivalent to Filt(A, B)

Proposition 6.9. Let A and B be categories with products and filtered colimits such

that directed colimits commute with pointwise absolute equalizers, and such that re-

duced products are determined by ultraproducts in B, then the category Top-ind(A, B)

is equivalent to the category Filt(A, B) of functors from A to B that preserve filtered

colimits.

Proof. We have already defined the functors ( )' : Top-ind(A,B) — Filt(A, B)

and () : Filt(A, B) — Top-ind(A,B). It is clear that ( )' 0 () is the identity. Let

F : A — B be a Top-indexed functor, we will show that for every ultrafilter (/,G)

arid every Wiig pratt a)

F\(lim []A;) > lim FX] Aj) > lim [ F'A;.
yeJEG IE) JEG J JEG JET
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Thus, using lemma 6.8 we conclude that F = PF,

Let (/,G) be an ultrafilter, and Jo € G. Then S(Jo) denotes the principal filter on

I generated by Jo. For every j € Jo we have the continuous function hjy, : S > Is(Jp)

defined after definition 6.3, that induces the following commutative square

pd

Al s(so) AS

F!s(s0) PSs

B!s(0) BS.

id

If we start with ((Aj), Aas;,,) val Aj) € Als), then we have that F(m;) =
"€Joa j

(F1s(40)((A;), Abe §5 (mrs I] A;-));- Therefore
3' € Jo

Is (mj) wl (Fm)
I (40) ((Aj), Aeesps row ft Aw) TZ ((F Aj), FAas 59) Ta ae

J ° J € Jo

Now, the continuous function hgsij,) : Ig > Is(gg) induces another commutative

square

Als( 40) Se Als

Fl sso) Fils

B's(0) Bis

Jo

from which we conclude that

F Assia? met I] A; a lim TA; )= F Aa gsscig) —? oy I] FA; =, lum [] FA;.
9 € Jo Tegje; 1 € Jo TEGie)

In particular, taking Aa.) =I] Aj and mj =17;, consider the morphism
1 € Jo

TI] Aj__%o , lim [Aj
| TEC jE)

in Als, apply F/9 to obtain that

Fis(lim [] A; + lim I] A;) =
TEeSiE3 FEches
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F(lim |] A;) =+ lim F(T] Aj) lim TI PA).
JEGIE) JEG ged JEGIE3

This last arrow is then yr¢g. Since we already know that F is determined by these

arrows we see that we have an equivalence as stated. O

6.11 Subcategories Closed Under Ultraproducts

Suppose now that we have a full subcategory Ao of A such that Ao has filtered

colimits and they are preserved by the inclusion Ag — A. Then we can define a

sub Top-indexed category Ao of A as follows. AX is the full subcategory of A*

whose objects are the coalgebras (A, —> lim [J] Ay) such that for every x € X
Usryeu

we have that A, is an object of Ao. It is clear that for every continuous function

f:Z— X, the functor f* : AX — A? restricts to AX, that is, f* : AX > AZ. It

also is clear that for every directed poset D, the functor Vp: AXé — AP restricts

to Vp: Axe — AP.

We will be able to apply the results of this section to Top-indexed categories of

models due to the fact that models over a sheaf category are the same thing as sheaves

of models as the next proposition shows

Proposition 6.10. The category of models MOD(P)* is equivalent to the full sub-

category of (SET?)* whose objects are coalgebras (M, —> lim []M,) such that for

every r € X, M, € Mod(P). er

Proof. First notice that this is clearly true for the topological space 1. Given a

topological space X, a model M € MOD(P)* corresponds to the coalgebra (2*M —

lim []y*M) in (SET?)*. Clearly 2*M € Mod(P). On the other hand, if we start
UszryEU

with a coalgebra (M, > lim [] M,) in (SET”)* such that for every x € X we
UszryEU

have that M, € Mod(P), this determines a functor M : P — Sh(X) such that

MP =(M,P 25 lim [IM,P). Oo
UszryEU

Definition 6.5. We say that the subcategory Ao is closed under A-ultraproducts if

for every ultrafilter (J,G) we have that the functor lim [](-) : A! = A restricts to
: =r TES EI

a functor lim [](-) : Ag — Ao.
Jecgyed
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Fix full subcategories Ap of A, and Bo of B, with filtered colimits preserved by

both inclusions and such that Ao is closed under A-ultraproducts and Bo is closed

under B-ultraproducts. Define Ap and Bo as above. We assume as well that in A

and in B filtered colimits commute with pointwise absolute equalizers.

Lemma 6.11. /f F : Ap — Bo is a Top-indezed functor, then F! : Ap ~ Bo

preserves filtered colimits.

Proof. We can repeat the same reasoning that leads to the proof of proposition

6.6. O

We have then a functor ( )! : Top-ind(Ao, Bo) + Filt(Ao, Bo). Notice that we

can not define a functor in the other direction as before because we do not have, in

general, products in Ap or Bo.

Given F : Ap — Bo, we can define the natural transformations yrg for every

ultrafilter (1,G) as before, that is, yrg¢(Aj), is

F's(lim JIA; —> lim [I A;): Flim [TT A:) lim [] F'A;.
——

JEGIET JEGIEJS JEGjEI JEcj,eEeJ

or put in a diagram lim TI ()

Aj JEGsiEJ an

(F1)! YFG F!

I

lim TI (.)
JEG EJ

With essentially the same proof we also have

Lemma 6.12. /f in B reduced products are determined by ultraproducts and F :

Ao — Bo is a Top-indered functor, then F is determined by the natural transforma-

tions yrg for all ultrafilters (1,G).

O

Lemma 6.13. The functor ( )' : Top-ind(Ao, Bo) — Filt(Ao, Bo) is faithful.



14]

Proof. lf 6: F +~ G: Ap — Bo is a T-indexed natural transformation, X is a

topological space and z € X, consider the following diagram

Since ¢ is a T-indexed natural transformation, we have that for any coalgebra (A, >

lim |] Ay) in AX, (6* (72)). = 6'Az : FA, > GA-. It is clear then that ¢* is totally
UszyEU

determined by ¢! O

It is easy to see that for every small pretopos P the category Mod(P) satisfies

all the necesary conditions as a full subcategory of Set” and therefore as a corollary

of lemma 6.11 we have

Proposition 6.14. For any Top-indezred functor F : MOD(P) — MOD(Q) the

functor F! : Mod(P) > Mod(Q) preserves filtered colimits. Oo
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